Skip to main content

Operation Regimes and Slower-is-Faster-Effect in the Control of Traffic Intersections

  • Chapter
  • First Online:
Modelling and Optimisation of Flows on Networks

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2062))

Abstract

The efficiency of traffic flows in urban areas is known to crucially depend on signal operation. Here, elements of signal control are discussed, based on the minimization of overall travel times or vehicle queues. Interestingly, we find different operation regimes, some of which involve a “slower-is-faster effect”, where a delayed switching reduces the average travel times. These operation regimes characterize different ways of organizing traffic flows in urban road networks. Besides the optimize-one-phase approach, we discuss the procedure and advantages of optimizing multiple phases as well. To improve the service of vehicle platoons and support the self-organization of “green waves”, it is proposed to consider the price of stopping newly arriving vehicles.

First published in: The European Physical Journal B 70(2), 257–274, DOI: 10.1140/epjb/e2009-00213-5 (2009), © EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2009, reproduction with kind permission of The European Physical Journal (EPJ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For formulas to estimate these quantities as a function of the utilization of the service capacity of roads see [20].

  2. 2.

    If the cycle time \({T}_{\mathrm{cyc}}\) is limited to a certain maximum value \({T}_{\mathrm{cyc}}^{\mathrm{max}}\), one must replace the constraint \({x}_{1} + {x}_{2} \leq 1\) by \({x}_{1} + {x}_{2} \leq 1 - ({\tau }_{1} + {\tau }_{2})/{T}_{\mathrm{cyc}}^{\mathrm{max}}\) and 1 − u 2 by \(1 - {u}_{2} - ({\tau }_{1} + {\tau }_{2})/{T}_{\mathrm{cyc}}^{\mathrm{max}}\).

  3. 3.

    In this case, we do not expect a periodic signal control anymore, as the growing vehicle queue in one of the road sections, see [20], has to be considered in the signal optimization procedure. Our formulas for one-phase optimization can handle this case due to the dependence on \(\Delta {N}_{j}(0)\). In the two-phase optimization procedure, we would have to add \(\sum\limits_{j}{I}_{j}\,\Delta {N}_{j}(0)\) to formula (72), where \(\Delta {N}_{j}(0) = {A}_{j}{T}_{\mathrm{cyc}}^{k} -\widehat{ {Q}}_{j}\,\Delta {T}_{j}^{k}\) denotes the number of vehicles that was not served during the kth cycle \({T}_{\mathrm{cyc}}^{k} = {\tau }_{1} + \Delta {T}_{1}^{k} + {\tau }_{2} + \Delta {T}_{2}^{k}\). This gives an additional term \(\sum\limits_{j}{u}_{j}{I}_{j}\widehat{{Q}}_{j}({\tau }_{1} + {\tau }_{2})\sum\limits_{k}(1 + {\sigma }_{1}^{k} + {\sigma }_{2}^{k} - {\sigma }_{j}^{k}/{u}_{j})\) in (72).

  4. 4.

    The finite deceleration only matters slightly, when the exact moment must be determined when a road section becomes fully congested.

References

  1. R. Barlovic, T. Huisinga, A. Schadschneider, M. Schreckenberg, Adaptive traffic light control in the ChSch model for city traffic, in Traffic and Granular Flow’03, ed. by P.H.L. Bovy, S.P. Hoogendoorn, M. Schreckenberg, D.E. Wolf (Springer, Berlin, 2004)

    Google Scholar 

  2. M. Ben-Akiva, A. de Palma, Some circumstances in which vehicles will reach their destinations earlier by starting later: Revisited. Transp. Sci. 20, 52–55 (1986)

    Article  Google Scholar 

  3. O. Biham, A.A. Middleton, D. Levine, Self-organization and a dynamical transition in traffic-flow models. Phys. Rev. A 46, R6124–R6127 (1992)

    Article  Google Scholar 

  4. D. Braess, Über ein Paradoxon der Verkehrsplanung. Unternehmensforsch. 12, 258–268 (1968)

    MathSciNet  MATH  Google Scholar 

  5. E. Brockfeld, R. Barlovic, A. Schadschneider, M. Schreckenberg, Optimizing traffic lights in a cellular automaton model for city traffic. Phys. Rev. E 64, 056132 (2001)

    Article  Google Scholar 

  6. C. Chase, P.J. Ramadge, On real-time scheduling policies for flexible manufacturing systems. IEEE Trans. Autom. Contr. 37(4), 491–496 (1992)

    Article  MathSciNet  Google Scholar 

  7. D. Chowdhury, A. Schadschneider, Self-organization of traffic jams in cities: Effects of stochastic dynamics and signal periods. Phys. Rev. E 59, R1311–R1314 (1999)

    Article  Google Scholar 

  8. R.B. Cooper, S.-C. Niu, M.M. Srinivasan, When does forced idle time improve performance in polling models? Manag. Sci. 44, 1079–1086 (2000)

    Article  Google Scholar 

  9. J. Esser, M. Schreckenberg, Microscopic simulation of urban traffic based on cellular automata. Int. J. Mod. Phys. B 8, 1025–1036 (1997)

    Article  Google Scholar 

  10. B. Faieta, B.A. Huberman, Firefly: a synchronization strategy for urban traffic control. Internal Report No. SSL-42, Xerox PARC, Palo Alto, 1993

    Google Scholar 

  11. G. Feichtinger, R.F. Hartl, Optimale Kontrolle ökonomischer Prozesse [Optimal Control of Economic Processes] (de Gruyter, Berlin, 1986)

    Google Scholar 

  12. M. Fouladvand, M. Nematollahi, Optimization of green-times at an isolated urban crossroads. Eur. Phys. J. B 22, 395–401 (2001)

    Article  Google Scholar 

  13. M.E. Fouladvand, M.R. Shaebani, Z. Sadjadi, Simulation of intelligent controlling of traffic flow at a small city network. J. Phys. Soc. Jpn. 73, 3209 (2004)

    Article  Google Scholar 

  14. M.E. Fouladvand, Z. Sadjadi, M.R. Shaebani, Optimized traffic flow at a single intersection: traffic responsive signalization. J. Phys. A 37, 561–576 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Garavello, B. Piccoli, Traffic Flow on Networks (American Institute of Mathematical Sciences, Springfield, 2006); Y. Chitour, B. Piccoli, Traffic circles and timing of traffic lights for cars flow. Discrete Cont. Dyn. Syst. B 5, 599–630 (2005)

    Google Scholar 

  16. C. Gershenson, Self-Organizing traffic lights. Complex Syst. 16, 29–53 (2005)

    Google Scholar 

  17. S.-B. Cools, C. Gershenson, B. D’Hooghe, Self-organizing traffic lights: A realistic simulation, in Advances in Applied Self-Organizing Systems, ed. by M. Prokopenko (Springer, New York, 2007)

    Google Scholar 

  18. D. Helbing, A section-based queueing-theoretical traffic model for congestion and travel time analysis in networks. J. Phys. Math. Gen. 36, L593–L598 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Helbing, Production, supply, and traffic systems: A unified description. in Traffic and Granular Flow ’03, ed. by S.P. Hoogendoorn, S. Luding, P.H.L. Bovy, M. Schreckenberg, D.E. Wolf (Springer, Berlin, 2005), pp. 173–188

    Chapter  Google Scholar 

  20. D. Helbing, Derivation of a fundamental diagram for urban traffic flow. Eur. Phys. J. B 70, 229–241 (2009)

    Article  MathSciNet  Google Scholar 

  21. D. Helbing, S. Lämmer, Verfahren zur Koordination konkurrierender Prozesse oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes [Method for coordination of concurrent processes for control of the transport of mobile units within a network]. Patent WO/2006/122528 (2006)

    Google Scholar 

  22. D. Helbing, I. Farkas, T. Vicsek, Simulating dynamical features of escape panic. Nature 407, 487–490 (2000)

    Article  Google Scholar 

  23. D. Helbing, R. Jiang, M. Treiber, Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic. Phys. Rev. E 72, 046130 (2005)

    Article  Google Scholar 

  24. D. Helbing, R. Jiang, M. Treiber, Analytical investigation of oscillations in intersecting flows of pedestrian and vehicle traffic. Phys. Rev. E 72, 046130 (2005); R. Jiang, D. Helbing, P.K. Shukla, Q.-S. Wu, Inefficient emergent oscillations in intersecting driven many-particle flows. Phys. A 368, 567–574 (2006)

    Google Scholar 

  25. D. Helbing, S. Lämmer, J.-P. Lebacque, Self-organized control of irregular or perturbed network traffic, in Optimal Control and Dynamic Games, ed. by C. Deissenberg, R.F. Hartl (Springer, Dordrecht, 2005), pp. 239–274

    Chapter  Google Scholar 

  26. D. Helbing, A. Johansson, J. Mathiesen, M.H. Jensen, A. Hansen, Analytical approach to continuous and intermittent bottleneck flows. Phys. Rev. Lett. 97, 168001 (2006)

    Article  Google Scholar 

  27. D. Helbing, T. Seidel, S. Lämmer, K. Peters (2006) Self-organization principles in supply networks and production systems, in Econophysics and Sociophysics—Trends and Perspectives, ed. by B.K. Chakrabarti, A. Chakraborti, A. Chatterjee (Wiley, Weinheim, 2006), pp. 535–558

    Google Scholar 

  28. D. Helbing, J. Siegmeier, S. Lämmer, Self-organized network flows. Netw. Heterogeneous Media 2, 193–210 (2007)

    Article  MATH  Google Scholar 

  29. D.-w. Huang, W.-n. Huang, Traffic signal synchronization. Phys. Rev. E 67, 056124 (2003)

    Google Scholar 

  30. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Networks, vol. 4, Perth, 27 November 1995 to 01 December 1995, pp. 1942–1948

    Google Scholar 

  31. A. Kesting, M. Treiber, M. Schönhof, D. Helbing, Extending adaptive cruise control to adaptive driving strategies. Transp. Res. Rec. 2000, 16–24 (2007)

    Article  Google Scholar 

  32. S. Lämmer, Reglerentwurf zur dezentralen Online-Steuerung von Lichtsignalanlagen in Straßennetzwerken [Controller design for a decentralized control of traffic lights in urban road networks]. Ph.D. Thesis, Dresden University of Technology, 2007

    Google Scholar 

  33. S. Lämmer, D. Helbing, Self-control of traffic lights and vehicle flows in urban road networks. J. Stat. Mech. (JSTAT), 2008, P04019 (2008)

    Google Scholar 

  34. S. Lämmer, H. Kori, K. Peters, D. Helbing Decentralised control of material or traffic flows in networks using phase-synchronisation. Phys. A 363, 39–47 (2006)

    Google Scholar 

  35. S. Lämmer, R. Donner, D. Helbing, Anticipative control of switched queueing systems. Eur. Phys. J. B 63, 341–348 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Nagatani, Jamming transition in the traffic-flow model with two-level crossings. Phys. Rev. E 48, 3290–3294 (1993)

    Article  Google Scholar 

  37. T. Nagatani, Control of vehicular traffic through a sequence of traffic lights positioned with disordered interval. Phys. Stat. Mech. Appl. 368, 560–566 (2006)

    Article  Google Scholar 

  38. T. Nakatsuji, S. Seki, T. Kaku, Development of a self-organizing traffic control system using neural network models. Transp. Res. Rec. 1324, 137–145 (1995)

    Google Scholar 

  39. C.H. Papadimitriou, J.N. Tsitsiklis, The complexity of optimal queuing network control. Math. Oper. Res. 24, 293–305 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Roughgarden, Selfish Routing and the Price of Anarchy (MIT, Cambridge, 2005)

    Google Scholar 

  41. M. Sasaki, T. Nagatani, Transition and saturation of traffic flow controlled by traffic lights. Phys. Stat. Mech. Appl. 325 531–546 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Schönhof, M. Treiber, A. Kesting, D. Helbing, Autonomous detection and anticipation of jam fronts from messages propagated by intervehicle communication. Transp. Res. Rec. 1999, 3–12 (2007)

    Article  Google Scholar 

  43. D. Schrank, T. Lomax, The 2005 Urban Mobility Report (Texas Transportation Institute, College Station Texas, 2005)

    Google Scholar 

  44. K. Sekiyama, J. Nakanishi, I. Takagawa, T. Higashi, T. Fukuda, Self-organizing control of urban traffic signal network. IEEE Int. Conf. Syst. Man. Cybern. 4, 2481–2486 (2001)

    Google Scholar 

  45. P.M. Simon, K. Nagel, Simplified cellular automaton model for city traffic. Phys. Rev. E 58, 1286–1295 (1998)

    Article  Google Scholar 

  46. R.J. Smeed, Some circumstances in which vehicles will reach their destinations earlier by starting later. Transp. Sci. 1, 308–317 (1967)

    Article  Google Scholar 

  47. H.-U. Stark, C.J. Tessone, F. Schweitzer, Slower-is-faster: Fostering consensus formation by heterogeneous inertia. Adv. Complex Syst. 11(4), 551–563 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. R. Steinberg, R.E. Stone, The prevalence of paradoxes in transportation equilibrium problems. Transp. Sci. 22, 231–241 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  49. B.A. Toledo, V. Munoz, J. Rogan, C. Tenreiro, J.A. Valdivia, Modeling traffic through a sequence of traffic lights. Phys. Rev. E 70, 016107 (2004)

    Article  Google Scholar 

  50. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

Download references

Acknowledgements

Author contributions: DH set up the model, performed the analytical calculations, and wrote the manuscript. AM produced the numerical results and figures, and derived the separating lines given by (94) and (95).

Acknowledgements: The authors would like to thank for partial support by the ETH Competence Center “Coping with Crises in Complex Socio-Economic Systems” (CCSS) through ETH Research Grant CH1-01 08-2, the VW Foundation Project I/82 697 on “Complex Self-Organizing Networks of Interacting Machines: Principles of Design, Control, and Functional Optimization”, the Daimler-Benz Foundation Project 25-01.1/07 on “BioLogistics”, and the “Cooperative Center for Communication Networks Data Analysis”, a NAP project sponsored by the Hungarian National Office of Research and Technology under Grant No. KCKHA005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Helbing .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helbing, D., Mazloumian, A. (2013). Operation Regimes and Slower-is-Faster-Effect in the Control of Traffic Intersections. In: Modelling and Optimisation of Flows on Networks. Lecture Notes in Mathematics(), vol 2062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32160-3_7

Download citation

Publish with us

Policies and ethics