Skip to main content

Production, Supply, and Traffic Systems: A Unified Description

  • Conference paper
Traffic and Granular Flow ’03

Summary

The transport of products between different suppliers or production units can be described similarly to driven many-particle and traffic systems. We introduce equations for the flow of goods in supply networks and the adaptation of production speeds. Moreover, we present two examples: The case of linear (sequential) supply chains and the case of re-entrant production. In particular, we discuss the stability conditions, dynamic solutions, and resonance phenomena causing the frequently observed “bullwhip effect”, which is an analogue of stop-and-go traffic. Finally, we show how to treat discrete units and cycle times, which can be applied to the description of vehicle queues and travel times in freeway networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. J. Hopp and M. L. Spearman, Factory Physics (McGraw-Hill, Boston, 2000).

    Google Scholar 

  2. T. Nagatani and D. Helbing, Stability analysis and stabilization strategies for linear supply chains, Physica A, in print (2004).

    Google Scholar 

  3. D. Helbing, S. Lämmer, P. Šeba, and T. Płatkowski, Physics, stability and dynamics of supply networks, preprint (2004).

    Google Scholar 

  4. R. Albert and A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74, 47–97 (2002).

    Article  Google Scholar 

  5. U. Witt and G.-Z. Sun, Myopic behavior and cycles in aggregate output, in Jahrbücher f. Nationalökonomie u. Statistik (Lucius & Lucius, Stuttgart, 2002), Vol. 222/3, pp. 366–376.

    Google Scholar 

  6. C. Daganzo, A Theory of Supply Chains (Springer, New York, 2003).

    MATH  Google Scholar 

  7. D. Armbruster, Dynamical systems and production systems, in G. Radons and R. Neugebauer (eds.) Nonlinear Dynamics of Production Systems (Wiley, New York, 2004).

    Google Scholar 

  8. D. Helbing, Modeling and optimization of production processes: Lessons from traffic dynamics, in G. Radons and R. Neugebauer (eds.) Nonlinear Dynamics of Production Systems (Wiley, New York, 2004).

    Google Scholar 

  9. E. Lefeber, Nonlinear models for control of manufacturing systems in G. Radons and R. Neugebauer (eds.) Nonlinear Dynamics of Production Systems (Wiley, New York, 2004).

    Google Scholar 

  10. D. Helbing, Modelling supply networks and business cycles as unstable transport phenomena, New Journal of Physics 5, 90.1–90.28 (2003).

    Article  Google Scholar 

  11. F. Chen, Z. Drezner, J. K. Ryan, and D. Simchi-Levi, Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information, Management Science 46(3), 436–443 (2000).

    Article  Google Scholar 

  12. H. Lee, P. Padmanabhan, and S. Whang, The bullwhip effect in supply chains, Sloan Management Rev. 38, 93–102 (1997).

    Google Scholar 

  13. H. L. Lee, V. Padmanabhan, and S. Whang, Information distortion in a supply chain: The bullwhip effect, Management Science 43(4), 546–558 (1997).

    MATH  Google Scholar 

  14. R. Metters, Quantifying the bullwhip effect in supply chains, in Proc. 1996 MSOM Conf., pp. 264–269 (1996).

    Google Scholar 

  15. J. Dejonckheere, S. M. Disney, M. R. Lambrecht, and D. R. Towill, Transfer function analysis of forecasting induced bullwhip in supply chains. International Journal of Production Economics 78, 133–144 (2002).

    Article  Google Scholar 

  16. J. Dejonckheere, S. M. Disney, M. R. Lambrecht, and D. R. Towill, Measuring and avoiding the bullwhip effect: A control theoretic approach, European Journal of Operational Research 147, 567–590 (2003).

    Article  MATH  Google Scholar 

  17. K. Hoberg, U. W. Thonemann, and J. R. Bradley, Analyzing the bullwhip effect of installation-stock and echelon-stock policies with linear control theory, in Proceedings of the Operations Research Conference 2003, Heidelberg (2003).

    Google Scholar 

  18. B. Faisst, D. Arnold, and K. Furmans, The impact of the exchange of market and stock information on the bullwhip effect in supply chains, in Proceedings of the Operations Research Conference 2003, Heidelberg (2003).

    Google Scholar 

  19. D. Marthaler, D. Armbruster, and C. Ringhofer, A mesoscopic approach to the simulation of seminconductor supply chains, in G. Mackulak et al. (eds.) Proc. of the Int. Conf. on Modeling and Analysis of Semiconductor Manufacturing, pp. 365–369 (2002).

    Google Scholar 

  20. I. Diaz-Rivera, D. Armbruster, and T. Taylor, Periodic orbits in a class of reentrant manufacturing systems, Math. and Op. Res. 25, 708–725 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Armbruster, D. Marthaler, and C. Ringhofer, Modeling a re-entrant factory, preprint 1/2003, submitted to Operations Research.

    Google Scholar 

  22. E. Mosekilde and E. R. Larsen, Deterministic chaos in beer production-distribution model, System Dynamics Review 4(1/2), 131–147 (1988).

    Article  Google Scholar 

  23. J. D. Sterman, Business Dynamics (McGraw-Hill, Boston, 2000).

    Google Scholar 

  24. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995).

    Article  Google Scholar 

  25. D. Helbing, A section-based queueing-theoretical traffic model for congestion and travel time analysis in networks, J. Phys. A: Math. Gen. 36, L593–L598 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber, MASTER: Macroscopic traffic simulation based on a gas-kinetic, non-local traffic model, Transportation Research B 35, 183–211 (2001).

    Article  Google Scholar 

  27. D. Helbing, A. Hennecke, and M. Treiber, Phase diagram of traffic states in the presence of inhomogeneities, Phys. Rev. Lett. 82, 4360–4363 (1999).

    Article  Google Scholar 

  28. K. Nishinari, M. Treiber, and D. Helbing, Interpreting the wide scattering of synchronized traffic data by time gap statistics, Phys. Rev. E 68, 067101 (2003).

    Article  Google Scholar 

  29. B. S. Kerner and H. Rehborn, Experimental features and characteristics of traffic jams, Phys. Rev. E 53, R1297–R1300 (1996).

    Article  Google Scholar 

  30. M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic on long crowded roads, Proc. Roy. Soc. London, Ser. A 229, 317–345 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  31. T. Beaumariage and K. Kempf, The nature and origin of chaos in manufacturing systems, in Proceedings of the 5th IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 169–174 (1994).

    Google Scholar 

  32. I. Katzorke and A. Pikovsky, Chaos and complexity in simple models of production dynamics, Discrete Dynamics in Nature and Society 5, 179–187 (2000).

    Article  MATH  Google Scholar 

  33. T. Ushio, H. Ueda, and K. Hirai, Controlling chaos in a switched arrival system, Systems & Control Letters 26, 335–339 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  34. B. Rem and D. Armbruster, Control and synchronization in switched arrival systems, Chaos 13, 128–137 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  35. L. A. Bunimovich, Controlling production lines, in H. Schuster (ed.) Handbook of Chaos Control, pp. 324–343 (Wiley-VCH, Berlin, 1999).

    Google Scholar 

  36. J. J. Bartholdi and D. D. Eisenstein, A production line that balances itself, Operations Research 44, 21–34 (1996).

    MATH  Google Scholar 

  37. E. Zavadlav, J. O. McClain, and L. J. Thomas, Self-buffering, self-balancing, self-flushing production lines, Management Science 42, 1151–1164 (1996).

    Article  MATH  Google Scholar 

  38. P. H. Zipkin, Found. of Inventory Management (McGraw-Hill, Boston, 2000).

    Google Scholar 

  39. J. A. Hołyst, T. Hagel, G. Haag, and W. Weidlich, How to control a chaotic economy?, Journal of Evolutionary Economics 6, 31–42 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Helbing, D. (2005). Production, Supply, and Traffic Systems: A Unified Description. In: Hoogendoorn, S.P., Luding, S., Bovy, P.H.L., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ’03. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28091-X_14

Download citation

Publish with us

Policies and ethics