Skip to main content

Mass Transport in Porous Media With Variable Mass

  • Chapter
  • First Online:
Numerical Analysis of Heat and Mass Transfer in Porous Media

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 27))

Abstract

We present a theoretical and numerical study of mass transport in a porous medium saturated with a fluid and characterised by an evolving internal structure. The dynamics of the porous medium and the fluid as well as their reciprocal interactions are described at a coarse scale, so that the fundamental tools of Mixture Theory and Continuum Mechanics can be used. The evolution of the internal structure of the porous medium, which is here primarily imputed either to growth or to mass exchange with the fluid, is investigated by enriching the space of kinematic variables of the mixture with a set of structural descriptors, each of which is power-conjugate to generalised forces satisfying a balance law. Establishing the influence of the structural change of the porous medium on the transport properties of the mixture and, thus, on the quantities characterising fluid flow is the crux of our contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By “classical” we mean here the Continuum Mechanics that studies non-living matter.

References

  1. Ambrosi, D., Guana, F.: Stress-modulated growth. Math. Mech. Solids 12, 319–342 (2007)

    Article  Google Scholar 

  2. Ambrosi, D., Guillou, A., Di Martino, E.: Stress-modulated remodeling of a non-homogeneous body. Biomechan. Model. Mechanobiol 7, 63–76 (2008)

    Article  CAS  Google Scholar 

  3. Ambrosi, D., Mollica, F.: On the mechanics of a growing tumor. Int. J. Eng. Sci. 40, 1297–1316 (2002)

    Article  Google Scholar 

  4. Ambrosi, D., Mollica, F.: The role of stress in the growth of a multicell spheroid. J. Math. Biol. 48, 477–499 (2004)

    Article  CAS  Google Scholar 

  5. Ambrosi, D., Preziosi, L., Vitale, G.: The insight of mixtures theory for growth and remodeling. Z. Angew. Math. Phys. 61, 177–191 (2010)

    Article  CAS  Google Scholar 

  6. Ateshian, G.A., Weiss, J.A.: Anistropic hydraulic permeability under finite deformation. J. Biomech. Eng. 132, 111,004–1 (2010)

    Google Scholar 

  7. Atkin, R., Craine, R.: Continuum theories of mixtures: basic theory and historical development. Quart. J. Mech. Appl. Math. 29, 209–244 (1976)

    Article  Google Scholar 

  8. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuß, N., Rentz-Reichert, H., Wieners, C.: UG – a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1, 27–40 (1997)

    Article  Google Scholar 

  9. Bear, J.: Dynamics of fluid in Porous Media. Dover Publications, INC, New York (1972)

    Google Scholar 

  10. Bennethum, L.S., Murad, M.A., Cushman, J.H.: Macroscale thermodynamics and the chemical potential for swelling porous media. Transport in Porous Media 39, 187–225 (2000)

    Article  CAS  Google Scholar 

  11. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005). DOI:10.1017/S0962492904000212. http://dx.doi.org/10.1017/S0962492904000212

    Google Scholar 

  12. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge, New York, Melbourne (2008)

    Book  Google Scholar 

  13. Bowen, R.: (1976) Theory of Mixtures. vol. III, pages 1–127. Academic Press, Inc., New York

    Google Scholar 

  14. Braess, D.: Finite Elements : Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press (2009). http://www.worldcat.org/isbn/9780521588348

  15. Brezzi, F.: On existence, uniqueness, and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Model. Math. Anal. Numer. 21, 129–151 (1974)

    Google Scholar 

  16. Brezzi, F., Pitkäranta, J.: (1984) On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch W. (ed.) Efficient Solutions of Elliptic Systems, pp. 11–19. Vieweg

    Google Scholar 

  17. Cermelli, P., Fried, E., Sellers, S.: Configurational stress, yield and flow in rate-independent plasticity. Proc. R. Soc. Lond. A 457, 1447–1467 (2001)

    Article  CAS  Google Scholar 

  18. Curnier, A., He, Q.C., Zysset, P.: Conewise linear elastic materials. J. Elast. 37, 1–38 (1995)

    Article  Google Scholar 

  19. Davis, T.A.: Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004). http://doi.acm.org/10.1145/992200.99220.. http://doi.acm.org/10.1145/992200.992206

  20. DiCarlo, A., Quiligotti, S.: Growth and balance. Mechanics Research Communications 29 (2002)

    Google Scholar 

  21. Ehlers, W., Markert, B.: A linear viscoelastic biphasic model for soft tissues based on the theory of porous media. J. Biomech. Eng. 123, 418–424 (2001)

    Article  CAS  Google Scholar 

  22. Epstein, M., Maugin, G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16, 951–978 (2000)

    Article  Google Scholar 

  23. Favino, M., Krause, R., Johannes, S.: An efficient preconditioning strategy for schur complements arising from biphasic models. In: Biomedical Engineering / 765: Telehealth / 766: Assistive Technologies (2012)

    Google Scholar 

  24. Federico, S., Grillo, A.: Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mater. 44, 58–71 (2012)

    Article  Google Scholar 

  25. Fung, Y.C.: Biomechanics: Motion, Flow, Stress, and Growth. Springer-Verlag Inc., New York (1990)

    Google Scholar 

  26. Fusi, L., Farina, A., Ambrosi, D.: Mathematical modelling of solid liquid mixture with mass exchange between constituents. Mathematics and Mechanics of Solids pp. 575–595 (11)

    Google Scholar 

  27. Grillo, A., Federico, S., Wittum, G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. International Journal of Non-Linear Mechanics (doi:10.1016/j.ijnonlinmec.2011.09.026) (2011)

    Google Scholar 

  28. Grillo, A., Federico, S., Wittum, G., Imatani, S., Giaquinta, G., Mićunović, M.V.: Evolution of a fibre-reinforced growing mixture. Il Nuovo Cimento 32C(1), 97–119 (2009)

    Google Scholar 

  29. Grillo, A., Wittum, G., Giaquinta, G., Mićunović, M.V.: A multiscale analysis of growth and diffusion dynamics in biological materials. Int. J. Eng. Sci. 47, 261–283 (2009)

    Article  CAS  Google Scholar 

  30. Grillo, A., Zingali, G., Borrello, D., Giaquinta, G.: Transport phenomena in living systems and continuum physics. La Rivista del Nuovo Cimento 31(11), 485–562 (2007)

    Google Scholar 

  31. Groß, C., Krause, R.: Import of geometries and extended informations into obslib++ using the exodus ii and exodus parameter file formats. Tech. Rep. 712, Institute for Numerical Simulation, University of Bonn, Germany (2008)

    Google Scholar 

  32. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continu. Cambridge University Press, Cambridge, New York, Melbourne (2010)

    Book  Google Scholar 

  33. Hassanizadeh, S.M., Gray, W.G.: Derivation of conditions describing transport across zones of reduced dynamics within multiphase systems. Water Resour. Res. 25, 529–539 (1989)

    Article  CAS  Google Scholar 

  34. Holmes, M.H., Mow, V.C.: The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23(11), 1145–1156 (1990)

    Article  CAS  Google Scholar 

  35. Hwang, F., Cai, X.: Parallel fully coupled schwarz preconditioners for saddle point problems. Eelectronic transactions on numerical analysis (2006)

    Google Scholar 

  36. Kröner, E.: Die inneren Spannungen und die Inkompatibilitätstensor in der Elastizitätstheorie. Zeitschrift für Angewandte Mathematik und Physik 7, 249–257 (1959)

    Google Scholar 

  37. Kröner, E.: Kontinuumstheorie der versetzung und eigenspannungen. Arch Ration. Mech. Anal. 4, 273–334 (1960)

    Article  Google Scholar 

  38. Lang, S., Wieners, C., Wittum, G.: The application of adaptive parallel multigrid methods to problems in nonlinear solid mechanics, stein, e. (ed): adaptive methods in solid mechanics edn. J. Wiley (2002)

    Google Scholar 

  39. Lee, E.H.: Elastic-plastic deformation at finite strains. ASME Transaction on Journal of Applied Mechanics 36, 1–6 (1969)

    Article  Google Scholar 

  40. Loret, B., Simões, F.M.F.: A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur. J. Mech. A/Solids24, 757–781 (2005)

    Article  Google Scholar 

  41. Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39, 4627–4664 (2002)

    Article  Google Scholar 

  42. Mićunović, M.V.: Thermodynamics of Viscoplasticity, Advances in Mathematics for Applied Sciences, vol. 20. Springer Verlag, Heidelberg (2009)

    Google Scholar 

  43. Miehe, C., Stein, E., Wagner, W.: Associative multiplicative elasto-plasticity. formulation and aspects of the numerical implementation including stability analysis. Comput. Struct. 52, 969–978 (1994)

    Article  Google Scholar 

  44. Ogden, R.W.: Non-Linear Elastic Deformations. Dover Publications, INC, Mineola (1984)

    Google Scholar 

  45. Olsson, T., Klarbring, A.: Residual stresses in soft tissue as a consequence of growth and remodeling: application to an arterial geometry. Eur. J. Mech. A/Solids 27, 959–974 (2008)

    Article  Google Scholar 

  46. Preziosi, L., Vitale, G.: A multiphase model of tumor and tissue growth including cell adhesion and plastic reorganization. Math. Models Methods Appl. Sci. 21(9), 1901–1932 (2011)

    Article  CAS  Google Scholar 

  47. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, Texts in Applied Mathematics, vol. 37. Springer-Verlag Inc., New York (2000)

    Google Scholar 

  48. Quiligotti, S.: On bulk growth mechanics of solid-fluid mixtures: kinematics and invariance requirements. Theor. Appl. Mech. 28(−29), 277–288 (2002)

    Article  Google Scholar 

  49. Rajagopal, K.R.: Multiple natural configurations in continuum mechanics. Rep. Inst. Comput. Appl. Mech. 6,   (1995)

    Google Scholar 

  50. Rajagopal, K.R., Srinivasa, A.R.: On thermodynamical restrictions of continua. Proc. R. Soc. Lond. A 460, 631–651 (2004)

    Article  Google Scholar 

  51. Rajagopal, K.R., Tao, L.: Mechanics of Mixtures, Advances in Mathematics for Applied Sciences, vol. 35. World Scientific, Singapore (1995)

    Google Scholar 

  52. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  53. Rodriguez, E.K., Hoger, A., D., M.A.: Stress-dependent finite growth in soft elastic tissues. Journal of Biomechanics 27, 455–467 (1994)

    Google Scholar 

  54. Simo, J.C., Hughes, T.J.R.: Compuational Inelasticity. Springer Verlag,   (1998)

    Google Scholar 

  55. Simo, J.C., Rifai, M.S.: A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering 29(8), 1595–1638 (1990). doi:DOI:10.1002/nme.1620290802. http://dx.doi.org/10.1002/nme.1620290802

    Google Scholar 

  56. T.E. Simos, G.P., Tsitouras, C. (eds.): Growth and Mass Transfer in Multi-Constituent Biological Materials, vol. 1 (2010)

    Google Scholar 

  57. Taber, L.A.: Biomechanics of growth, remodeling and morphogenesis. ASME Appl. Mech. Rev. 48, 487–545 (1995)

    Article  Google Scholar 

  58. Truesdell, C.A.: Sulle basi della termomeccanica. Lincei. Rend. Sc. fis. mat. nat. 22, 33–38 (1957)

    Google Scholar 

  59. Wieners, C.: Nonlinear solution methods for infinitesimal perfect plasticity. Z. Angew. Math. Mech. 87(8–9), 643–660 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Politecnico di Torino (Turin, Italy), Universitá della Svizzera Italiana (Lugano, Switzerland), and Goethe-Universität Frankfurt am Main, Germany. We thank Prof. Luigi Preziosi (Polytechnic of Turin, Italy) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio Grillo .

Editor information

Editors and Affiliations

Appendix

Appendix

The following relations are used in the computations above:

$$ {{\partial J}\over {\partial {\mathbf{C}}}} = \tfrac{1}{2}J {\mathbf{C}}^{-1}, \quad {{\partial {\mathbf{C}}}\over {\partial {\mathbf{F}}}} = {\mathbf{\delta}}\;\overline{\otimes}\;{\mathbf{F}}^{T} + {\mathbf{F}}^{T}\underline {\otimes}\;{\mathbf{\delta}}, $$
(130)
$$ {{\partial {\mathbf{C}}^{-1}}\over{\partial {\mathbf{C}}}} = - {\mathbb{I}} = - \tfrac{1}{2}\big\lbrack {\mathbf{C}}^{-1} \underline {\otimes}\;{\mathbf{C}}^{-1} + {\mathbf{C}}^{-1} \overline{\otimes}\;{\mathbf{C}}^{-1} \big\rbrack. $$
(131)

The tensor \({\mathbb{I}}_{n}\) is obtained from (131) by substituting \({\mathbf{C}}\) with \({\mathbf{C}}_{e}\).

Given two second-order tensors \({\mathbf{A}}\) and \({\mathbf{B}}\), the products \({\mathbf{A}}\;\overline{\otimes}\;{\mathbf{B}}\) and \({\mathbf{A}}\;\underline {\otimes}\;{\mathbf{B}}\) have the following index representation [18]

$$ \lbrack{\mathbf{A}}\;\overline{\otimes}\;{\mathbf{B}}\rbrack_{IJMN} = A_{IN}B_{JM}, \quad \lbrack{\mathbf{A}}\;\underline {\otimes}\;{\mathbf{B}}\rbrack_{IJMN} = A_{IM}B_{JN}. $$
(132)

To perform the linearisation procedure, we set \(\varvec{u} = \varvec{u}_{0} + \varvec{h}\), and use the following Gateaux-derivatives:

$$ \begin{aligned} {\mathfrak{D}}(J\pi{\mathbf{C}}^{-1})(\varvec{u}_{0},\pi_{0})[\varvec{h},\theta] &= (J_{0}({\mathbf{C}}_{0})^{-T}\!\!: {\mathfrak{D}}{\mathbf{E}}(\varvec{u}_{0})\lbrack\varvec{h}\rbrack) \pi_{0}({\mathbf{C}}_{0})^{-1} \\ &+ J_{0} \theta ({\mathbf{C}}_{0})^{-1} - J_{0}\pi_{0} 2 ({\mathbf{C}}_{0})^{-1} \lbrace {\mathfrak{D}}{\mathbf{E}}(\varvec{u}_{0})[\varvec{h}]\rbrace({\mathbf{C}}_{0})^{-1}, \end{aligned} $$
(133)
$$ {\mathfrak{D}}\dot{{\mathbf{E}}}_{v}(\varvec{u}_{0},\varvec{v}_{v})[\varvec{h}] = \tfrac{1}{2}\big\lbrack ({\mathbf{H}})^{T}\dot{{\mathbf{F}}}_{v} + (\dot{{\mathbf{F}}}_{v})^{T}{\mathbf{H}}\big\rbrack, $$
(134)
$$ {\mathfrak{D}}{\mathbf{S}}(\varvec{u}_{0})[\varvec{h}] = {\mathbb{C}}_{r}(\varvec{u}_{0})\!\!:{\mathfrak{D}}{\mathbf{E}}(\varvec{u}_{0})[\varvec{h}], $$
(135)
$$ {\mathbb{C}}_{r} = J_{a} ({\mathbf{F}}_{a})^{-1}\underline {\otimes}({\mathbf{F}}_{a})^{-1}\!\!:{\mathbb{C}}_{n}\!\!:({\mathbf{F}}_{a})^{-T}\underline {\otimes}({\mathbf{F}}_{a})^{-T}. $$
(136)

The formulae in Sect. 3.1 are retrieved by setting \(\varvec{u}\equiv\varvec{u}^{m,k},\; \varvec{u}_{0}\equiv\varvec{u}^{m,k-1}\) and \(\varvec{h}\;\equiv\;\varvec{h}^{m,k}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grillo, A., Giverso, C., Favino, M., Krause, R., Lampe, M., Wittum, G. (2012). Mass Transport in Porous Media With Variable Mass. In: Delgado, J., de Lima, A., da Silva, M. (eds) Numerical Analysis of Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30532-0_2

Download citation

Publish with us

Policies and ethics