Skip to main content

Numerical Analysis of Mass Transfer Around a Sphere Buried in Porous Media: Concentration Contours and Boundary Layer Thickness

  • Chapter
  • First Online:
Numerical Analysis of Heat and Mass Transfer in Porous Media

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 27))

Abstract

The mass transfer process between a moving fluid and a slightly soluble or fast reacting sphere buried in a packed bed, with “uniform velocity”, was obtained numerically, for solute transport by both advection and diffusion. Fluid flow in the granular bed around the sphere was assumed to follow Darcy’s law and the elliptic Partial Differential Equations (PDE), resulting from a differential material balance on the solute in an elementary control volume, was studied and solved numerically over the “whole range” of values of the relevant parameters (Peclet number and Schmidt number). The numerical solutions gave the concentration contour plots and concentration boundary layer thickness as a function of the relevant parameters. For each concentration level, the width and downstream length of the corresponding contour surface were determined. General expressions are presented to predict contaminant “plume” size downstream of the polluting source. An important feature of this work is the detailed discussion of the finite differences method adopted, with emphasis on the High-Resolution Schemes (HRS) used in the discretization of the convection term of the PDE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alves, M.A., Oliveira, P.J., Pinho, F.T.: A convergent and universally bounded interpolation scheme for the treatment of advection. Int. J. Numer. Meth. Fl. 41, 47–75 (2003)

    Article  Google Scholar 

  2. Anderson, J.D.: Computational Fluid Dynamics. McGraw-Hill, New York (1995)

    Google Scholar 

  3. Avedesian, M.M., Davidson, J.F.: Combustion of carbon particles in a fluidised bed. Trans. Inst. Chem. Eng. 51, 121–131 (1973)

    CAS  Google Scholar 

  4. Brian, P.L.T., Hales, H.B.: Effects of transpiration and changing diameter on heat and mass transfer to spheres. AIChE J. 15, 419–425 (1969)

    Article  CAS  Google Scholar 

  5. Chakraborty, R.K., Howard, J.R.: Combustion of single carbon particles in fluidized beds of high-density alumina. J I Energy 54, 48–54 (1981)

    CAS  Google Scholar 

  6. Cheng, C.Y.: Double diffusion from a vertical wavy surface in a porous medium saturated with a non-Newtonian fluid. Int. Commun. Heat Mass 34, 285–294 (2007)

    Article  Google Scholar 

  7. Coelho, M.N., Guedes de Carvalho, J.R.: Transverse dispersion in granular beds Part I- Mass transfer from a wall and the dispersion coefficient in packed beds. Chem. Eng. Res. Des. 66, 165–177 (1988)

    CAS  Google Scholar 

  8. Coelho, M.N., Guedes de Carvalho, J.R.: Transverse dispersion in granular beds Part II- Mass transfer from large spheres immersed in fixed or fluidised beds of small inert particles. Chem. Eng. Res. Des. 66, 178–189 (1988)

    CAS  Google Scholar 

  9. Courant, R., Isaacson, E., Rees, M.: The solution of nonlinear hyperbolic differential equations by finite differences. Commun. Pur. Appl. Math. 5, 243–255 (1952)

    Article  Google Scholar 

  10. Currie, I.G.: Fundamental Mechanics of Fluids. McGraw-Hill, New York (1993)

    Google Scholar 

  11. Darwish, M.S., Moukalled, F.: Normalized variable and space formulation methodology for high-resolution schemes. Numer. Heat Transfer, Part B 26, 79–96 (1994)

    Article  Google Scholar 

  12. Davidson, J.F., Harrison, D.: Fluidised Particles. Cambridge University Press, Cambridge (1963)

    Google Scholar 

  13. Delgado, J.M.P.Q.: Longitudinal and transverse dispersion in porous media. Chem. Eng. Res. Des. 85, 386–394 (2007)

    Article  CAS  Google Scholar 

  14. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer-Verlag, Berlin (1996)

    Book  Google Scholar 

  15. Fetter, C.W.: Contaminant Hydrogeology. Prentice-Hall, Upper Sadle River (1999)

    Google Scholar 

  16. Freitas, C.J.: Policy statement on the control of numerical accuracy. J. Fluid Eng-T. ASME 115, 339–340 (1993)

    Article  Google Scholar 

  17. Gaskell, P.H., Lau, A.K.C.: Curvature compensated convective transport: SMART a new boundedness preserving transport algorithm. Int. J. Numer. Meth. Fl. 8, 617–641 (1988)

    Article  Google Scholar 

  18. Guedes de Carvalho, J.R.F., Coelho, M.A.N.: Comments on mass transfer to large particles in fluidized beds of smaller particles. Chem. Eng. Sci. 41, 209–210 (1986)

    Article  CAS  Google Scholar 

  19. Guedes de Carvalho, J.R., Pinto, A.R., Pinho, C.T.: Mass transfer around carbon particles burning in fluidised beds. Trans. IChemE 69, 63–70 (1991)

    CAS  Google Scholar 

  20. Guedes de Carvalho, J.R.F., Alves, M.A.: Mass transfer and dispersion around active sphere buried in a packed bed. AIChE J. 45, 2495–2502 (1999)

    Article  Google Scholar 

  21. La Nauze, R.D., Jung, K., Kastl, J.: Mass transfer to large particles in fluidized beds of smaller particles. Chem. Eng. Sci. 39, 1623–1633 (1984)

    Article  Google Scholar 

  22. Leonard, B.P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Method Appl. M. 19, 59–98 (1979)

    Article  Google Scholar 

  23. Leonard, B.P.: Simple high-accuracy resolution program for convective modelling of discontinuities. Int. J. Numer. Meth. Fl. 8, 1291–1318 (1988)

    Article  Google Scholar 

  24. Leung, L.A., Smith, I.W.: Role of fuel reactivity in fluidized-bed combustion. Fuel 58, 354–360 (1979)

    Article  Google Scholar 

  25. Middleman, S.: An Introduction to Mass and Heat Transfer. Wiley, New York (1998)

    Google Scholar 

  26. Nebbali, R., Bouhadef, K.: Numerical study of forced convection in a 3D flow of a non-Newtonian fluid through a porous duct. Int. J. Numer. Method H. 16, 870 (2006)

    Article  CAS  Google Scholar 

  27. Patankar, S.V.: Numerical Heat Transfer and Fluid Flow (Series in Computational Methods in Mechanics and Thermal Science). Hemisphere Pub Corp, Washington (1980)

    Google Scholar 

  28. Phillips, O.M.: Flow and Reactions in Permeable Rocks. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  29. Pinto, A.R., Guedes de Carvalho, J.R.: Transverse dispersion in granular beds Part III- Mass transfer around particles dispersed in granular beds of inerts and the combustion of carbon particles in beds of sand. Trans. IChemE 68, 503–509 (1990)

    CAS  Google Scholar 

  30. Prandtl, L.: Eine beziehung zwishen wärmeaustausch und strömungwiderstand der flüssigkeiten. Phys. Z. 11, 1072 (1910)

    Google Scholar 

  31. Prins, W., Casteleijn, T.P., Draijer, W., Van Swaaij, W.P.M.: Mass transfer from a freely moving single sphere to the dense phase of a gas fluidized bed of inert particles. Chem. Eng. Sci. 40, 481–497 (1985)

    Article  CAS  Google Scholar 

  32. Ranz, WE., Marshall, WR. Jr: Evaporation from drops. Chem. Eng. Prog. 48, 141–146 (Part I) and 173–180 (Part II) (1952)

    Google Scholar 

  33. Schlichting, H.: Boundary Layer Theory. McGraw-Hill, New York (1979)

    Google Scholar 

  34. Shyy, W.: A study of finite difference approximations to steady-state convection-dominated flow problems. J. Comput. Phys. 57, 415–438 (1985)

    Article  Google Scholar 

  35. Spalding, D.B.: A novel finite-difference formulation for differential expressions involving both first and second derivatives. Int. J. Numer. Meth. Eng. 4, 551–559 (1972)

    Article  Google Scholar 

  36. Stoessell, R.K.: Mass transport in sandstones around dissolving plagioclase grains. Geology 15, 295–298 (1987)

    Article  CAS  Google Scholar 

  37. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation-laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  Google Scholar 

  38. Van Heerden, C., Nobel, A.P.P., Krevelen, D.W.: Mechanism of heat transfer in fluidised beds. Ind. Eng. Chem. 45, 1237–1242 (1953)

    Article  Google Scholar 

  39. Wilhelm, R.H.: Progress towards the a priori design of chemical reactors. Pure Appl. Chem. 5, 403–421 (1962)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. P. Q. Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Delgado, J.M.P.Q., Vázquez da Silva, M. (2012). Numerical Analysis of Mass Transfer Around a Sphere Buried in Porous Media: Concentration Contours and Boundary Layer Thickness. In: Delgado, J., de Lima, A., da Silva, M. (eds) Numerical Analysis of Heat and Mass Transfer in Porous Media. Advanced Structured Materials, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30532-0_1

Download citation

Publish with us

Policies and ethics