Skip to main content

Differentiation of CACTA-like Elements in Arabidopsis

  • Chapter
  • First Online:
Evolutionary Biology: Mechanisms and Trends

Abstract

CACTA elements are the major class 2 transposable elements in plant species. There were 254 elements that represent entire copies of CACTA and CACTA-like elements in Arabidopsis thaliana. The CACTA and CACTA-like elements were categorized into two groups depending on the second open reading frame, TNP-A, and their structure. Whereas one group, named AtCAC23, contains a TPase_23 domain, another group, named AtCAC24, contains a TPase_24 domain. The AtCAC24 elements were outnumbered and more ancient than the AtCAC23 elements. There were two active elements in a methylation-abolished environment. One such element was CAC1 (AtCAC23009), which was previously reported by others. Another one was AtCAC24024, which was newly found here. The transposition activity of AtCAC24024 was lower than that of CAC1. In the joint amplified fragment length polymorphism and transposon display analyses, the highly active CAC1 elements exhibited copy number increment in the recently differentiated ecotypes, whereas the AtCAC24024 elements exhibited copy number increment to high copies in early differentiation, which were randomly lost during ecotype differentiation. We also found a novel domesticated CACTA-derived TPase gene, Adote1, which was involved in various developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alix K, Joets J, Ryder CD, Moore J, Barker GC, Bailey JP, King GJ, Heslop-Harrison JS (2008) The CACTA tansposon Bot1 played a major role in Brassica genome divergence and gene proliferation. Plant J 56:1030–1044

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Bartolome C, Maside X, Charlesworth B (2002) On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol Biol Evol 19:926–937

    Article  PubMed  CAS  Google Scholar 

  • Bercury SD, Panavas T, Irenze K, Walker EL (2001) Molecular analysis of the Doppia transposssable element of maize. Plant Mol Biol 47:341–351

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, Hooykaas P (2005) An Arabidopsis hAT-like transposase is essential for plant development. Nature 436:282–284

    Article  PubMed  CAS  Google Scholar 

  • Chopra S, Brendel V, Zhang J, Axtell JD, Peterson T (1999) Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc Natl Acad Sci USA 96:15330–15335

    Article  PubMed  CAS  Google Scholar 

  • Craig NL (2002) Mobile DNA: an introduction. In: Craig N, Cragie R, Geller M, Lambowitz A (eds) Mobile DNA II. Am Soc Microbiol, Washington DC, pp 3–11

    Google Scholar 

  • DeMarco R, Venancio TM, Verjovski-Almeida S (2006) SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposon belongs to the CACTA superfamily. BMC Evol Biol 6:89. doi:10.1186/1471-2148-6-89

    Article  PubMed  Google Scholar 

  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601–603

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic geomes. Ann Rev Genet 41:331–368

    Article  PubMed  CAS  Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–368

    Article  PubMed  CAS  Google Scholar 

  • Finnegen DJ (1989) Eukaryotic transposable elements and genome evolution. Trends Genet 5:103–107

    Article  Google Scholar 

  • Frey M, Reinecke J, Grant S, Saedler H, Gierl A (1990) Excision of the En/Spm transposable element of Zea mays requires two element-encoded protein. EMBO J 9:4037–4044

    PubMed  CAS  Google Scholar 

  • Gierl A, Saedler H (1992) Plant transposable elements and gene-tagging. Plant Mol Biol 19:39–49

    Article  PubMed  CAS  Google Scholar 

  • Gierl A, Lutticke S, Saedler H (1988) TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J 7:73–85

    Google Scholar 

  • Hoshino A, Inagaki Y, Iida S (1995) Structural analysis of Tpn1, a transposable element isolated from Japanese morning glory bearing variegated flowers. Mol Gen Genet 247:114–117

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Juka J (1999) Molecular paleontology of transposable elements from Arabidopsis thalaiana. Genetica 107:27–37

    Article  PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2001) Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA 98:8714–8719

    Article  PubMed  CAS  Google Scholar 

  • Kunze R, Weil C (2002) hAT and CACTA plant transposon. In: Craig N, Cragie R, Geller M, Lambowitz A (eds) DNA mobile II. Am Soc Microbiol, Washinton DC, pp 519–532

    Google Scholar 

  • Kwon S-J, Park K-C, Kim J-H, Lee J-K, Kim N-S (2005) Rim2/Hipa CACTA transposon display: a new genetic marker technique in Oryza species. BMC Genet 6:15

    Article  PubMed  Google Scholar 

  • Kwon S-J, Hong S-W, Son J-H, Lee J-K, Cha Y-S, Eun M-Y, Kim N-S (2006) CACTA and MITE transposon distribution on a genetic map of rice using F15 RILs derived fromMylyang23 and Gihobyeo hybrids. Mol Cells 21:360–366

    PubMed  CAS  Google Scholar 

  • Langdon T,Jenkins G,Hasterok R,Jones RN,King IR (2003) A high-copy number CATA 411 family transposon in tenperate grasses and cereals.Genetics 163:1097–1108.

    PubMed  CAS  Google Scholar 

  • Lee JK, Park J-Y, Kim H-H, Kwon S-J, Shin J-H, Hong S-K, Min H-K, Kim N-S (2006) Genetic mapping of the Isaac-CACTA transposon in maize. Theor Appl Genet 113:16–22

    Article  PubMed  CAS  Google Scholar 

  • Le Rouzic A, Capy P (2006) Population genetics models of competition between transposable element subfamilies. Genetics 174:785–793

    Article  PubMed  Google Scholar 

  • Li W, Zhang P, Fellers JP, Friebe B, Gill BS (2004) Sequence composition, organization, and evolution of core Triticeae genome. Plant J 40:500–511

    Article  PubMed  CAS  Google Scholar 

  • Lockton S, Ross-Ibarra J, Gaut BS (2008) Demography and weak selection drive patterns of transposable element diversity in natural populations of Arabidopsis lyrata. Proc Natl Acad Sci USA 105:13965–13970

    Article  PubMed  CAS  Google Scholar 

  • Masson P, Rutherford G, Banks JA, Fedoroff N (1989) Essential large transcripts of the maize Spm transposable element are generated by alternate splicing. Cell 58:755–765

    Article  PubMed  CAS  Google Scholar 

  • Masson P, Stern M, Fedorof N (1991) The tnpA and tnpD gene products of Spm element are required for transposition in tobacco. Plant Cell 3:73–85

    PubMed  CAS  Google Scholar 

  • McClintock B (1954) Mutations in maize and chromosomal aberrations Neurospora. Carnegie Inst Year Book 53:254–260

    Google Scholar 

  • McClintock B (1961) Further studies on the suppressor-mutator system of control gene action in maize. Carnegie Inst Year Book 60:459–476

    Google Scholar 

  • Menssen A, Hohmann S, Martin W, Schnable PS, Peterson PA, Saedler H, Gierl A (1990) En/Spm transposable element of Zea mays contains at the subtermini generating a novel intron from a dSpm element in the A2 gene. EMBO J 9:3051–3057

    PubMed  CAS  Google Scholar 

  • Miller WJ, Hagemann S, Reighter E, Pinsker W (1992) P-element homologous seqeuences are tandemly repeated in the genome of Drosophila guanche. Proc Natl Acad Sci USA 93:1443–1448

    Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  PubMed  CAS  Google Scholar 

  • Miura A, Kato M, Watanabe K, Kawabe A, Kotani H, Kakutani T (2004) Genomic localization of endogenous mobile CACTA family transposons in natural variants of Arabidopsis thaliana. Mol Genet Genom 270:524–532

    Article  CAS  Google Scholar 

  • Nacken WK, Piotrowiak R, Saedler H, Sommers H (1991) The transposable element Tam1 from Antihirnum majos shows structural homology to the maize transposable element En/Spm and has no sequence specificity of insertion. Mol Gen Genet 228:201–208

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284:604–607

    Article  PubMed  CAS  Google Scholar 

  • Pereira A, Schwarz-Sommers Z, Gierl A, Bertram I, Peterson PA, Saedler H (1985) Genetic and molecular analysis of the Enhancer (En) transposable element system of Zea mays. EMBO J 4:17–23

    PubMed  CAS  Google Scholar 

  • Peterson PA (1953) A mutable pale green locus in maize. Genetics 45:1115–1133

    Google Scholar 

  • Pritham EJ, Putliwala T, Feschotte C (2007) Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390:3–17

    Article  PubMed  CAS  Google Scholar 

  • Rizzon C, Marais G, Gouy M, Biemont C (2002) Recombination rate and the distribution of transposable element in the Drosophila melanogaster genome. Genome Res 12:400–407

    PubMed  CAS  Google Scholar 

  • Sergeeva EM, Salina EA, Adonina IG, Chalhoub B (2010) Evolutionary analysis of the CACTA DNA-Casper across wheat species using sequence comparison and in situ hybridization. Mol Genet Genomics 284:11–23

    Article  PubMed  CAS  Google Scholar 

  • Schläppi M, Smith D, Fedoroff N (1993) TnpA trans-activates methylated maize Suppressor-mutator transposable elements in transgenic tobacco. Genetics 133:1009–1021

    PubMed  Google Scholar 

  • Schläppi M, Raina R, Fedoroff N (1994) Epigenetic regulation of the maize Spm transposable element: novel activation of a methylated promoter by TnpA. Cell 77:427–437

    Article  PubMed  Google Scholar 

  • Sinzelle L, Kapitonov VV, Grzela DP, Jursch T, Jurka J, Izsvák Z, Ivics Z (2007) Transposition of a reconstructed Harbinger element in human cells and functional homology with two transoposon-derived cellular genes. Proc Natl Acad Sci USA 105:4715–4720

    Article  Google Scholar 

  • Sinzelle L, Izsvák Z, Ivics Z (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci 66:1073–1093

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Genet 8:272–285

    CAS  Google Scholar 

  • Smit AF, Riggs AD (1996) Tiggers and DNA transposon fossils in the human genome. Proc Nat Acad Sci USA 89:4018–4022

    Google Scholar 

  • Snowden K, Napoli CA (1998) Psl: a novel Spm-like transposable element from Petunia hybrida. Plant J 14:43–54

    Article  PubMed  CAS  Google Scholar 

  • Volff J-N (2006) Turing junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28:913–922

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Wright SI, Le QH, Schoen DJ, Bureau TE (2001) Population dynamics of an Ac-like transposable in self- and cross-pollinating Arabidopsis. Genetics 158:1009–1021

    Google Scholar 

  • Zabala G, Vodkin L (2007) Novel exon combination generated by alternate splicing of gene fragments mobilized by a CACTA transposon in Glycine max. BMC Plant Biol 7:38. doi:10.1186/1471-2229-7-38

    Article  PubMed  Google Scholar 

  • Zhang X, Wessler SR (2004) Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. Proc Natl Acad Sci USA 101:5589–5594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2009-0071672 to K.C.P. and 2009-0071745, 2010-0006674 to N.S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Soo Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Park, KC., Kim, NS. (2012). Differentiation of CACTA-like Elements in Arabidopsis . In: Pontarotti, P. (eds) Evolutionary Biology: Mechanisms and Trends. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30425-5_18

Download citation

Publish with us

Policies and ethics