Skip to main content

Lower Bounds of Shortest Vector Lengths in Random NTRU Lattices

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7287))

Abstract

Finding the shortest vector of a lattice is one of the most important problems in computational lattice theory. For a random lattice, one can estimate the length of the shortest vector using the Gaussian heuristic. However, no rigorous proof can be provided for some classes of lattices, as the Gaussian heuristic may not hold for them. In this paper, we propose a general method to estimate lower bounds of the shortest vector lengths for random integral lattices in certain classes, which is based on the incompressibility method from the theory of Kolmogorov complexity. As an application, we can prove that for a random NTRU lattice, with an overwhelming probability, the ratio between the length of the shortest vector and the length of the target vector, which corresponds to the secret key, is at least a constant, independent of the rank of the lattice.

Partially supported by NSF of China Projects (No.61133013 and No.60931160442), GIIFSDU Project (No. 11140070613184) and Tsinghua University Initiative Scientific Research Program (No.2009THZ01002).

Partially supported by NSF under grants CCF-0830522 and CCF-0830524.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: The shortest vector problem in l2 is NP-hard for randomized reductions (extended abstract) In: Proc. 30th ACM Symp. on Theory of Computing (STOC), pp. 10–19. ACM (1998)

    Google Scholar 

  2. Ajtai, M.: Random lattices and a conjectured 0-1 law about their polynomial time computable properties. In: Proc. of FOCS 2002, pp. 13–39. IEEE (2002)

    Google Scholar 

  3. Coster, M.J., Joux, A., La Macchia, B.A., Odlyzko, A.M., Schnorr, C.P., Stern, J.: An improved lowdensity subset sum algorithm. Computational Complexity 2, 111–128 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, J.-Y., Nerurkar, A.: Approximating the SVP to within a factor (1 + 1/ dim) is NP-hard under randomized reductions. J. Comput. System Sci. 59(2), 221–239 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Consortium for Efficient Embedded Security. Efficient embedded security standards \(\sharp 1\): Implementation aspects of NTRUEncrypt and NTRUSign, version (June 2, 2003)

    Google Scholar 

  6. Coppersmith, D., Shamir, A.: Lattice Attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)

    Google Scholar 

  7. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998); First presented at the rump session of Crypto 1996

    Chapter  Google Scholar 

  8. Haviv, I., Regev, O.: Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In: Proc. 39th ACM Symp. on Theory of Computing (STOC), pp. 469–477 (2007)

    Google Scholar 

  9. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing Parameter Sets for NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 118–135. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Ingleton, A.W.: The Rank of Circulant Matrices. J. London Math. Soc. s1-31, 445–460 (1956)

    Article  MathSciNet  Google Scholar 

  11. Khot, S.: Hardness of approximating the shortest vector problem in lattices. In: Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp. 126–135 (2004)

    Google Scholar 

  12. Lidl, R., Niederreiter, H.: Finite fields. Encyclopedia of Mathematics and its Applications, vol. 20. Addison-Wesley, Reading (1983)

    MATH  Google Scholar 

  13. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. Journal of the Association for Computing Machinery (January 1985)

    Google Scholar 

  14. Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 2nd edn. Springer (1997)

    Google Scholar 

  15. Micciancio, D.: The shortest vector problem is NP-hard to approximate to within some constant. SIAM J. on Computing 30(6), 2008–2035 (2001); Preliminary version in FOCS (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mazo, J.E., Odlyzko, A.M.: Lattice points in high-dimensional spheres. Monatsh. Math. 110, 47–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nguyen, P.Q., Stehlé, D.: LLL on the Average. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 238–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Siegel, C.L.: A mean Value theorem in geometry of numbers. Annals of Mathematics 46(2), 340–347 (1945)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bi, J., Cheng, Q. (2012). Lower Bounds of Shortest Vector Lengths in Random NTRU Lattices. In: Agrawal, M., Cooper, S.B., Li, A. (eds) Theory and Applications of Models of Computation. TAMC 2012. Lecture Notes in Computer Science, vol 7287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29952-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29952-0_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29951-3

  • Online ISBN: 978-3-642-29952-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics