Skip to main content

Nanomaterials for Enzyme Biofuel Cells

  • Chapter
  • First Online:
Nanobioelectrochemistry

Abstract

This book chapter describes the recent advances in the design of novel materials for enzymatic fuel cells. Energy conversion using biologic catalysts became a steady growing research field for supplying nomad or implantable devices due to the high specifity for the substrates and the high efficiency of redox enzymes. The constant issue, however, is the electric connection of the enzymatic redox centre to the electrode to obtain a high efficient biofuel cell. Among many advantages, nanotechnology have been offering exciting tools to achieve efficient interfacing between redox enzymes and electrical circuitry, while providing high active surfaces. We briefly introduce the principles that govern the production of electrical energy from biofuels using a biofuel cell. We focus our discussion on nanomaterials that have realized the efficient immobilization and wiring of enzymes, in particular carbon nanotubes, inorganic and polymer nanoparticles. We highlight the successfull use of these advanced materials in the engineering of enzyme electrodes and the design of novel miniaturized biofuel cell setups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barton, S.C., Gallaway, J., Atanassov, P.: Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104(10), 4867–4886 (2004). doi:10.1021/cr020719k

    Article  CAS  Google Scholar 

  2. Atanassov, P., Apblett, C., Banta, S., Brozik, S., Barton, S.C., Cooney, M., Liaw, B.Y., Sanjeev Mukerjee, Minteer, S.D.: Enzymatic biofuel cells. The Electrochemical Soc Interface 16(2), 28–31 (2007).

    Google Scholar 

  3. Cracknell, J.A., Vincent, K.A., Armstrong, F.A.: Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108(7), 2439–2461 (2008). doi:10.1021/cr0680639

    Article  CAS  Google Scholar 

  4. Zayats, M., Willner, B., Willner, I.: Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes. Electroanalysis 20(6), 583–601 (2008). doi:10.1002/elan.200704128

    Article  CAS  Google Scholar 

  5. Willner, I., Yan, Y.-M., Willner, B., Tel-Vered, R.: Integrated enzyme-based biofuel cells–a review. Fuel Cells 9(1), 7–24 (2009). doi:10.1002/fuce.200800115

    Article  CAS  Google Scholar 

  6. Nazaruk, E., Sadowska, K., Biernat, J., Rogalski, J., Ginalska, G., Bilewicz, R.: Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications. Anal. Bioanal. Chem. 398(4), 1651–1660 (2010). doi:10.1007/s00216-010-4012-1

    Google Scholar 

  7. Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A., Prato, M.: Organic functionalisation and characterisation of single-walled carbon nanotubes Chem. Soc. Rev. 38, 2214–2230 (2009). doi:10.1039/B518111A

    Article  CAS  Google Scholar 

  8. Le Goff, A., Moggia, F., Debou, N., Jegou, P., Artero, V., Fontecave, M., Jousselme, B., Palacin, S.: Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and π-stacking interactions and their relevance to glucose biosensing. J. Electroanal. Chem. 641(1–2), 57–63 (2010). doi:10.1016/j.jelechem.2010.01.014

    Google Scholar 

  9. Callegari, A., Cosnier, S., Marcaccio, M., Paolucci, D., Paolucci, F., Georgakilas, V., Tagmatarchis, N., Vázquez, E., Prato, M.: Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors. J. Mater. Chem. 14, 807–810 (2004). doi:10.1039/b316806a

    Article  CAS  Google Scholar 

  10. Gao, F., Viry, L., Maugey, M., Poulin, P., Mano, N.: Engineering hybrid nanotube wires for high-power biofuel cells. Nat Commun 1(1), 1–7 (2010)

    Google Scholar 

  11. Guiseppi-Elie, A., Lei, C.H., Baughman, R.H.: Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13(5), 559–564 (2002). doi:10.1088/0957-4484/13/5/303

    Article  CAS  Google Scholar 

  12. Liu, J., Chou, A., Rahmat, W., Paddon-Row, M.N., Gooding, J.J.: Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17(1), 38–46 (2005). doi:10.1002/elan.200403116

    Article  CAS  Google Scholar 

  13. Patolsky, F., Weizmann, Y., Willner, I.: Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem., Int. Ed. 43(14), 2113–2117 (2004). doi:10.1002/anie.200353275

    Google Scholar 

  14. Vaze, A., Hussain, N., Tang, C., Leech, D., Rusling, J.: Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase Electrochem. Comm. 11(10), 2004–2007 (2009). doi:10.1016/j.elecom.2009.08.039

    CAS  Google Scholar 

  15. Cai, C., Chen, J.: Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode Anal. Biochem. 325(2), 285–292 (2004). doi:10.1016/j.ab.2003.10.040

    CAS  Google Scholar 

  16. Gooding, J.J., Wibowo, R., Liu, J., Yang, W., Losic, D., Orbons, S., Mearns, F.J., Shapter, J.G., Hibbert, D.B.: Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125(30), 9006–9007 (2003)

    Article  CAS  Google Scholar 

  17. Wang, L., Wang, J., Zhou, F.: Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanalysis 16(8), 627–632 (2004). doi:10.1002/elan.200302849

    Article  CAS  Google Scholar 

  18. Wait, A.F., Parkin, A., Morley, G.M., dos Santos, L., Armstrong, F.A.: Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalyst. J. Phys. Chem. C 114(27), 12003–12009 (2010). doi:10.1021/jp102616m

    Article  CAS  Google Scholar 

  19. Alonso-Lomillo, M.A., Ruediger, O., Maroto-Valiente, A., Velez, M., Rodriguez-Ramos, I., Munoz, F.J., Fernandez, V.M., De Lacey, A.L.: Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett. 7(6), 1603–1608 (2007). doi:10.1021/nl070519u

    Article  CAS  Google Scholar 

  20. Lojou, E., Luo, X., Brugna, M., Candoni, N., Dementin, S., Giudici-Orticoni, M.T.: Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes. J. Biol. Inorg. Chem. 13(7), 1157 (2008). doi:10.1007/s00775-008-0401-8

    Article  CAS  Google Scholar 

  21. Luo, X., Brugna, M., Tron-Infossi, P., Giudici-Orticoni, M.T., Lojou, É.: Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. J. Biol. Inorg. Chem. 14(8), 1275–1288 (2009). doi:10.1007/s00775-009-0572-y

    Article  CAS  Google Scholar 

  22. Yan, Y., Zheng, W., L. Su, L.M.: Carbon-nanotube-based glucose/O2 biofuel cells. Adv. Mater. 18(19), 2639–2643 (2006). doi:10.1002/adma.200600028

    Google Scholar 

  23. Yan, Y.-M., Yehezkeli, O., Willner, I.: Integrated, electrically contacted NAD(P) + -dependent enzyme–carbon nanotube electrodes for biosensors and biofuel cell applications. Chem. Eur. J. 13(36), 10168–10175 (2007). doi:10.1002/chem.200700806

    Article  CAS  Google Scholar 

  24. Li, X., Zhou, H., Yu, P., Su, L., Ohsaka, T., Mao, L.: A miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate. Electrochem. Comm. 10(6), 851–854 (2008). doi:10.1016/j.elecom.2008.03.019

    Article  CAS  Google Scholar 

  25. Saleh, F.S., Mao, L., Ohsaka, T.: Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell Sens. Actuators B 152(1), 130–135 (2011). doi:10.1016/j.snb.2010.07.054

    Article  Google Scholar 

  26. Zebda, A., Gondran, C., Le Goff, A., Holzinger, M., Cinquin, P., Cosnier, S.: Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nature communications (doi:10.1038/ncomms1365) (2011, in press). doi:10.1038/ncomms1365

  27. Miyake, T., Yoshino, S., Yamada, T., Hata, K., Nishizawa, M.: Self-regulating enzyme—nanotube ensemble films and their application as flexible electrodes for biofuel cells. J. Am. Chem. Soc. (doi: 10.1021/ja111517e) (2011, in press). doi:10.1021/ja111517e

    Google Scholar 

  28. Zheng, W., Zhao, H.Y., Zhang, J.X., Zhou, H.M., Xu, X.X., Zheng, Y.F., Wang, Y.B., Cheng, Y., Jang, B.Z.: A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes. Electrochem. Comm. 12(7), 869–871 (2010). doi:10.1016/j.elecom.2010.04.006

    Article  CAS  Google Scholar 

  29. Guo, C.X., Hu, F.P., Lou, X.W., Li, C.M.: High-performance biofuel cell made with hydrophilic ordered mesoporous carbon as electrode material. J. Power Source 195(13), 4090–4097 (2010). doi:10.1016/j.jpowsour.2010.01.071

    Article  CAS  Google Scholar 

  30. Wen, D., Xu, X., Dong, S.: A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy & Environ. Sci. 4(4), 1358–1363 (2011). doi:10.1039/C0EE00080A

    Article  CAS  Google Scholar 

  31. Zhou, M., Guo, J., Guo, L.-p., Bai, J.: Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system. Anal. Chem. 80(12), 4642–4650 (2008). doi:10.1021/ac702496k

    Google Scholar 

  32. Mousty, C.: Biosensing applications of clay-modified electrodes: a review Anal. Bioanal. Chem. 396(1), 315–325 (2010). doi:10.1007/s00216-009-3274-y

    Article  CAS  Google Scholar 

  33. Shan, D., Cosnier, S., Mousty, C.: HRP wiring by redox active layered double hydroxides: application to the mediated H2O2 detection. Anal. Lett. 36(5), 909–922 (2003). doi:10.1081/AL-120019252

    Article  CAS  Google Scholar 

  34. Mousty, C., Vieille, L., Cosnier, S.: Laccase immobilization in redox active layered double hydroxides: A reagentless amperometric biosensor Biosens. Bioelectron. 22(8), 1733–1738 (2007). doi:10.1016/j.bios.2006.08.020

    Article  CAS  Google Scholar 

  35. Brunel, L., Denele, J., Servat, K., Kokoh, K.B., Jolivalt, C., Innocent, C., Cretin, M., Rolland, M., Tingry, S.: Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem. Commun. 9(2), 331–336 (2007). doi:10.1016/j.elecom.2006.09.021

    Article  CAS  Google Scholar 

  36. Deng, L., Shang, L., Wang, Y., Wang, T., Chen, H., Dong, S.: Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O2 biofuel cell electrochem. Comm. 10(7), 1012–1015 (2008). doi:10.1016/j.elecom.2008.05.001

    CAS  Google Scholar 

  37. Boland, S., Jenkins, P., Kavanagh, P., Leech, D.: Biocatalytic fuel cells: A comparison of surface pre-treatments for anchoring biocatalytic redox films on electrode surfaces. J. Electroanal. Chem. 626(1–2), 111–115 (2009). doi:10.1016/j.jelechem.2008.11.010

    CAS  Google Scholar 

  38. Tan, Y., Deng, W., Ge, B., Xie, Q., Huang, J., Yao, S.: Biofuel cell and phenolic biosensor based on acid-resistant laccase–glutaraldehyde functionalized chitosan–multiwalled carbon nanotubes nanocomposite film. Biosens. Bioelectron. 24(7), 2225–2231 (2009). doi:10.1016/j.bios.2008.11.026

    Article  CAS  Google Scholar 

  39. Cosnier, S.: Recent advances in biological sensors based on electrogenerated polymers: a review. Anal. Lett. 40(7), 1260–1279 (2007). doi:10.1080/00032710701326643

    Article  CAS  Google Scholar 

  40. Pingarrón, J.M., Yáñez-Sedeño, P., González-Cortés, A.: Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta. 53(19), 5848–5866 (2008). doi:10.1016/j.electacta.2008.03.005

    Article  Google Scholar 

  41. Yi, X., Huang-Xian, J., Hong-Yuan, C.: Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold Electrode anal. Biochem. 278(1), 22–28 (2000). doi:10.1006/abio.1999.4360

    CAS  Google Scholar 

  42. Liu, S., Ju, H.: Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode Biosens. & Bioelectron. 19(3), 177–183 (2003). doi:10.1016/S0956-5663(03)00172-6

    Google Scholar 

  43. Yehezkeli, O., Tel-Vered, R., Raichlin, S., Willner, I.: Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5(3), 2385–2391 (2011). doi:10.1021/nn200313t

    Article  CAS  Google Scholar 

  44. Murata, K., Kajiya, K., Nakamura, N., Ohno, H.: Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ. Sci. 2, 1280–1285 (2009). doi:10.1039/B912915D

    Article  CAS  Google Scholar 

  45. Deng, L., Shang, L., Wen, D., Zhai, J., Dong, S.: A membraneless biofuel cell powered by ethanol and alcoholic beverage biosen. Bioelectron. 26(1), 70–73 (2010). doi:10.1016/j.bios.2010.05.007

    Article  CAS  Google Scholar 

  46. Reisner, E., Powell, D.J., Cavazza, C., Fontecilla-Camps, J.C., Armstrong, F.A.: Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131(51), 18457–18466 (2009). doi:10.1021/ja907923r

    Article  CAS  Google Scholar 

  47. Hambourger, M., Gervaldo, M., Svedruzic, D., King, P.W., Gust, D., Ghirardi, M., Moore, A.L., Moore, T.A.: [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. J. Am. Chem. Soc. 130(6), 2015–2022 (2008). doi:10.1021/ja077691k

    Article  CAS  Google Scholar 

  48. Kim, J., Kim, S.I., Yoo, K.-H.: Polypyrrole nanowire-based enzymatic biofuel cells. Biosens Bioelectron. 25(2), 350–355 (2009). doi:10.1016/j.bios.2009.07.020

    Article  CAS  Google Scholar 

  49. Pan, C., Fang, Y., Wu, H., Ahmad, M., Luo, Z., Li, Q., Xie, J., Yan, X., Wu, L., Wang, Z.L., Zhu, J.: Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices. Adv. Mat. 22(47), 5388–5392 (2010). doi:10.1002/adma.201002519

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Cosnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cosnier, S., Le Goff, A., Holzinger, M. (2013). Nanomaterials for Enzyme Biofuel Cells. In: Crespilho, F. (eds) Nanobioelectrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29250-7_3

Download citation

Publish with us

Policies and ethics