Skip to main content

The Instance Easiness of Supervised Learning for Cluster Validity

  • Conference paper
New Frontiers in Applied Data Mining (PAKDD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7104))

Included in the following conference series:

Abstract

“The statistical problem of testing cluster validity is essentially unsolved” [5]. We translate the issue of gaining credibility on the output of un-supervised learning algorithms to the supervised learning case. We introduce a notion of instance easiness to supervised learning and link the validity of a clustering to how its output constitutes an easy instance for supervised learning. Our notion of instance easiness for supervised learning extends the notion of stability to perturbations (used earlier for measuring clusterability in the un-supervised setting). We follow the axiomatic and generic formulations for cluster-quality measures. As a result, we inform the trust we can place in a clustering result using standard validity methods for supervised learning, like cross validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, M., Ben-David, S.: Measures of clustering quality: A working set of axioms for clustering. In: Advances in Neural Information Processing Systems 22 NIPS, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, pp. 121–128. MIT Press, Vancouver (2008)

    Google Scholar 

  2. Ackerman, M., Ben-David, S.: Clusterability: A theoretical study. In: Proceedings of the Twelfth Int. Conf. on Artificial Intelligence and Statistics AISTATS, Clearwater Beach, Florida, USA, vol. 5, JMLR:W&CP (2009)

    Google Scholar 

  3. Bae, E., Bailey, J.: Coala: A novel approach for the extraction of an alternate clustering of high quality and high dissimilarity. In: Proceedings of the 6th IEEE Int. Conf. on Data Mining (ICDM), pp. 53–62. IEEE Computer Soc. (2006)

    Google Scholar 

  4. Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., Scuse, D.: WEKA Manual for Version 3-6-2. The University of Waikato (2010)

    Google Scholar 

  5. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, NY (2001)

    MATH  Google Scholar 

  6. Estivill-Castro, V., Yang, J.: Cluster Validity using Support Vector Machines. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 244–256. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Halkidi, M., Vazirgiannis, M.: Chapter 30 — quality assessment approaches in data mining. In: The Data Mining and Knowledge Discovery Handbook, pp. 661–696. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explorations 11(1), 10–18 (2009)

    Article  Google Scholar 

  9. Kleinberg, J.: An impossibility theorem for clustering. In: The 16th conference on Neural Information Processing Systems (NIPS), pp. 446–453. MIT Press (2002)

    Google Scholar 

  10. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52(1-2), 91–118 (2003)

    Article  MATH  Google Scholar 

  11. Rokach, L., Maimon, O.: Chapter 15 — clustering methods. In: The Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. on Machine Learning Research 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Witten, I., Frank, E.: Data Mining — Practical Machine Learning Tools and Technologies with JAVA implementations (2000)

    Google Scholar 

  14. Wu, X., et al.: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1), 1–37 (2008)

    Article  Google Scholar 

  15. Yang, J., Lee, I.: Cluster validity through graph-based boundary analysis. In: Int. Conf. on Information and Knowledge Engineering, IKE, pp. 204–210. CSREA Press (2004)

    Google Scholar 

  16. Yu, Z., Wong, H.-S., Wang, H.: Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics 23(21), 288–2896 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Estivill-Castro, V. (2012). The Instance Easiness of Supervised Learning for Cluster Validity. In: Cao, L., Huang, J.Z., Bailey, J., Koh, Y.S., Luo, J. (eds) New Frontiers in Applied Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 7104. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28320-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28320-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28319-2

  • Online ISBN: 978-3-642-28320-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics