Skip to main content

The Adaptive Evolution of Polar Fishes: Lessons From the Function of Hemoproteins

  • Chapter
  • First Online:
Adaptation and Evolution in Marine Environments, Volume 1

Part of the book series: From Pole to Pole ((POLE))

Abstract

The perciform suborder Notothenioidei, mostly confined within Antarctic and sub-Antarctic waters, dominates the modern Southern Ocean ichthyofauna. Notothenioids probably appeared in the early Tertiary and began to diversify on the Antarctic shelf in the middle Tertiary, adapting to progressive cooling (Eastman 1993). Notothenioids are morphologically and ecologically diverse, and account for 77% of the shelf fish diversity, 92% of abundance and 91% of biomass (Eastman 2005). They are monophyletic (Balushkin 2000; Chen et al. 2003; Near et al. 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balushkin AV (1992) Classification, phylogenetic relationships, and origins of the families of the suborder Notothenioidei (Perciformes). J Ichthyol 32:90–110

    Google Scholar 

  • Balushkin AV (2000) Morphology, classification, and evolution of notothenioid fishes of the Southern Ocean (Notothenioidei, Perciformes). J Ichthyol 40(Suppl 1):S74–S109

    Google Scholar 

  • Bargelloni L, Marcato S, Zane L, Patarnello T (2000) Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol 49:114–129

    Article  CAS  Google Scholar 

  • Bargelloni L, Ritchie PA, Patarnello T, Battaglia B, Lambert DM, Meyer A (1994) Molecular evolution at subzero temperatures: mitochondrial and nuclear phylogenies of fishes from Antarctica (suborder Notothenioidei), and the evolution of antifreeze glycopeptides. Mol Biol Evol 11:854–863

    CAS  Google Scholar 

  • Berenbrink M, Koldkjær P, Kepp O, Cossins AR (2005) Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science 307:1752–1757

    Article  CAS  Google Scholar 

  • Brunori M, Vallone B (2007) Neuroglobin, seven years after. Cell Mol Life Sci 64:1259–1268

    Article  CAS  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci USA 94:3811–3816

    Article  CAS  Google Scholar 

  • Chen W-J, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26:262–288

    Article  CAS  Google Scholar 

  • Cheng C-HC, Chen L, Near TJ, Jin Y (2003) Functional antifreeze glycoprotein genes in temperate-water New Zealand nototheniid fish infer an Antarctic evolutionary origin. Mol Biol Evol 20:1897–1908

    Article  CAS  Google Scholar 

  • Cheng C-HC, di Prisco G, Verde C (2009) The “icefish paradox”. Which is the task of neuroglobin in Antarctic hemoglobin-less icefish? IUBMB Life 61:184–188

    Article  CAS  Google Scholar 

  • Clarke A, Barnes DKA, Hodgson DA (2005) How isolated is Antarctica? Trends Ecol Evol 20:1–3

    Article  Google Scholar 

  • Cocca E, Ratnayake-Lecamwasam M, Parker SK, Camardella L, Ciaramella M, di Prisco G, Detrich III HWIII (1995) Genomic remnants of α-globin genes in the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci USA 92:1817–1821

    Article  CAS  Google Scholar 

  • Coppola D, Giordano D, Vergara A, Mazzarella L, di Prisco G, Verde C, Russo R (2010) The hemoglobins of sub-Antarctic fishes of the suborder Notothenioidei. Polar Sci 4:295–308

    Article  Google Scholar 

  • Christiansen JS (2012) The TUNU-programme: Euro-Arctic marine fishes–diversity and adaptation. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 35–50

    Google Scholar 

  • D’Avino R, Caruso C, Tamburrini M, Romano M, Rutigliano B, Polverino de Laureto P, Camardella L, Carratore V, di Prisco G (1994) Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J Biol Chem 269:9675–9681

    Google Scholar 

  • Dettaï A, di Prisco G, Lecointre G, Parisi E, Verde C (2008) Inferring evolution of fish proteins: the globin case study. Meth Enzymol 436:535–566

    Google Scholar 

  • DeVries AL, Cheng C-HC (2005) Antifreeze proteins and organismal freezing avoidance in polar fishes. In: Farrell AP, Steffensen JF (eds) The Physiology of Polar Fishes, Vol. 22 Fish Physiology, pp 155–201. Elsevier Academic Press, San Diego

    Google Scholar 

  • di Prisco G (2000) Life style and biochemical adaptation in Antarctic fishes. J Mar Syst 27:253–265

    Article  Google Scholar 

  • di Prisco G, Convey P (2012) The origin of the SCAR programme “Evolution and Biodiversity in the Antarctic”. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 3–18

    Google Scholar 

  • di Prisco G, Verde C (2006) Predicting the impacts of climate change on the evolutionary adaptations of polar fish. Rev Environ Sci Biotechnol 5:309–321

    Article  Google Scholar 

  • di Prisco G, Cocca E, Parker SK, Detrich III HW (2002) Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295:185–191

    Article  Google Scholar 

  • di Prisco G, D’Avino R, Caruso C, Tamburrini M, Camardella L, Rutigliano B, Carratore V, Romano M (1991) The biochemistry of oxygen transport in red-blooded Antarctic fish. In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic Fish. Springer, Berlin, pp 263–281

    Chapter  Google Scholar 

  • di Prisco G, Eastman JT, Giordano D, Parisi E, Verde C (2007) The evolutionary adaptations in Antarctic marine organisms. Gene 398:143–155

    Article  Google Scholar 

  • di Prisco G, Giardina B, D’Avino R, Condò SG, Bellelli A, Brunori M (1988) Antarctic fish hemoglobin: an outline of the molecular structure and oxygen binding properties–II. Oxygen binding properties. Comp Biochem Physiol 90B:585–591

    Google Scholar 

  • di Prisco G, Giordano D, Russo D, Verde C (2011) Haemoproteins in cold environments—An evolutionary view. In: Nagai M (ed) Hemoglobin: Recent developments and topics. Research Signpost, Trivandrum, pp 211–229

    Google Scholar 

  • di Prisco G, Giordano D, Russo R, Verde C (2012) The challenges of low temperature in the evolution of bacteria. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 183–195

    Google Scholar 

  • di Prisco G, Macdonald JA, Brunori M (1992) Antarctic fishes survive exposure to carbon monoxide. Experientia 48:473–475

    Article  Google Scholar 

  • Eastman JT (1988) Ocular morphology in Antarctic notothenioid fishes. J Morphol 196:927–934

    Article  Google Scholar 

  • Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic, San Diego

    Google Scholar 

  • Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107

    Article  Google Scholar 

  • Eastman JT (2006) Aspects of the morphology of phyletically basal bovichtid fishes of the Antarctic suborder Notothenioidei (Perciformes). Polar Biol 29:754–763

    Article  Google Scholar 

  • Eastman JT, McCune AR (2000) Fishes on the Antarctic continental shelf: evolution of a marine species flock? J Fish Biol Suppl A 57((Suppl. A)):84–102

    Google Scholar 

  • Everson I, Ralph R (1968) Blood analyses of some Antarctic fish. Br Antarctic Surv Bull 15:59–62

    Google Scholar 

  • Fago A, D’Avino R, di Prisco G (1992) The hemoglobins of Notothenia angustata, a temperate fish belonging to a family largely endemic to the Antarctic Ocean. Eur J Biochem 210:963–970

    Article  CAS  Google Scholar 

  • Giordano D, Grassi -globin in L, Parisi E, Bargelloni L, di Prisco G, Verde C (2006) Embryonic the non-Antarctic notothenioid fish Cottoperca gobio (Bovichtidae). Polar Biol 30:75–82

    Google Scholar 

  • Halder P, Trent J, Hargrove M (2007) Influence of the protein matrix on intramolecular histidine ligation in ferric and ferrous hexacoordinate hemoglobins. Proteins Struct Funct Bioinf 66:172–182

    Article  CAS  Google Scholar 

  • Krylov AA, Andreeva IA, Vogt C, Backman J, Krupskaya VV, Grikurov GE, Moran K, Shoji H (2008) A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanography 23, PA1S06, doi:10.1029/2007PA001497

  • Lecointre G (2012) Phylogeny and systematics of Antarctic teleosts: methodological and evolutionary issues In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 97–117

    Google Scholar 

  • Lecointre G, Bonillo C, Ozouf-Costaz C, Hureau J-C (1997) Molecular evidence for the origins of Antarctic fishes: paraphyly of the Bovichtidae and no indication for the monophyly of the Notothenioidei (Teleostei). Polar Biol 18:193–208

    Article  Google Scholar 

  • Mazzei F, Ghigliotti L, Lecointre G, Ozouf-Costaz C, Coutanceau JP, Detrich III HW, Pisano E (2006) Karyotypes of basal lineages in notothenioid fishes: the genus Bovichtus. Polar Biol 29:1071–1076

    Article  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    Article  CAS  Google Scholar 

  • Moran K, Backman J, Brinkhuis H et al (2006) The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441:601–605

    Article  CAS  Google Scholar 

  • Near TJ (2004) Estimating divergence times of notothenioid fishes using a fossil-calibrated molecular clock. Antarctic Sci 16:37–44

    Article  Google Scholar 

  • Near TJ, Parker SW, Detrich III HW (2006) A Genomic fossil reveals key steps in hemoglobin loss by the Antarctic icefishes. Mol Biol Evol 23:2008–2016

    Article  CAS  Google Scholar 

  • Near TJ, Pesavento JJ, Cheng C-HC (2004) Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA. Mol Phylogenet Evol 32:881–891

    Article  CAS  Google Scholar 

  • Perutz MF (1983) Species adaptation in a protein molecule. Mol Biol Evol 1:1–28

    CAS  Google Scholar 

  • Perutz MF, Fermi G, Luisi B, Shanan B, Liddington RC (1987) Stereochemistry of cooperative mechanisms in hemoglobin. Acc Chem Res 20:309–321

    Article  CAS  Google Scholar 

  • Riccio A, Tamburrini M, Carratore V, di Prisco G (2000) Functionally distinct hemoglobins of the cryopelagic Antarctic teleost Pagothenia borchgrevinki. J Fish Biol 57:20–32

    Article  CAS  Google Scholar 

  • Ruud JT (1954) Vertebrates without erythrocytes and blood pigment. Nature 173:848–850

    Article  CAS  Google Scholar 

  • Scher HD, Martin EE (2006) Timing and climatic consequences of the opening of Drake Passage. Science 312:428–430

    Article  CAS  Google Scholar 

  • Somero GN (1995) Proteins and temperature. Annu Rev Physiol 57:43–68

    Article  CAS  Google Scholar 

  • Tamburrini M, D’Avino R, Fago A, Carratore V, Kunzmann A, di Prisco G (1996) The unique hemoglobin system of Pleuragramma antarcticum, an Antarctic migratory teleost. Structure and function of the three components. J Biol Chem 271:23780–23785

    Article  CAS  Google Scholar 

  • Tamburrini M, Romano M, Carratore V, Kunzmann A, Coletta M, di Prisco G (1998) The hemoglobins of Antarctic fishes Artedidraco orianae and Pogonophryne scotti. Amino acid sequence, lack of cooperativity, and ligand binding properties. J Biol Chem 273:32452–32459

    Article  CAS  Google Scholar 

  • Thomson MRA (2004) Geological and palaeoenvironmental history of the Scotia Sea region as a basis for biological interpretation. Deep-Sea Res Part II 51:1467–1487

    Article  Google Scholar 

  • Tota B, Amelio D, Garofalo F, Pellegrino D (2012) Evolutionary adaptation and disaptation in the cold: the icefish paradigm. In: di Prisco G, Verde C (eds) Adaptation and evolution in marine environments—The impacts of global change on biodiversity, vol 1. Series “From Pole to Pole”. Springer, Berlin, pp 121–141

    Google Scholar 

  • Verde C, Balestrieri M, de Pascale D, Pagnozzi D, Lecointre G, di Prisco G (2006a) The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin. J Biol Chem 281:22073–22084

    Article  CAS  Google Scholar 

  • Verde C, Carratore V, Riccio A, Tamburrini M, Parisi E, di Prisco G (2002) The functionally distinct hemoglobins of the Arctic spotted wolffish Anarhichas minor. J Biol Chem 277:36312–36320

    Article  CAS  Google Scholar 

  • Verde C, Howes BD, De Rosa MC, Raiola L, Smulevich G, Williams R, Giardina B, Parisi E, di Prisco G (2004) Structure and function of the Gondwanan hemoglobin of Pseudaphritis urvillii, a primitive notothenioid fish of temperate latitudes. Prot Sci 13:2766–2781

    Article  CAS  Google Scholar 

  • Verde C, Parisi E, di Prisco G (2006b) The evolution of thermal adaptation in polar fish. Gene 385:137–145

    Article  CAS  Google Scholar 

  • Voskoboinikova OS (2004) Ontogenetic bases of the origin and of relationships of the fishes from the suborder Notothenioidei (Perciformes). J Ichthyol 44:418–432

    Google Scholar 

  • Wells RMG, Ashby MD, Duncan SJ, MacDonald JA (1980) Comparative studies of the erythrocytes and hemoglobins in nototheniid fishes from Antarctica. J Fish Biol 17:517–527

    Article  Google Scholar 

  • Wells RMG, MacDonald JA, di Prisco G (1990) Thin-blooded antarctic fishes: a rheological comparison of the hemoglobin-free icefishes, Chionodraco kathleenae and Cryodraco antarcticus, with a red-blooded nototheniid, Pagothenia bernacchii. J Fish Biol 36:595–609

    Article  CAS  Google Scholar 

  • Wittenberg JB, Haedrich RL (1974) The choroid rete mirabile of the fish eye. II. Distribution and relation to the pseudobranch and to the swimbladder rete mirabile. Biol Bull 146:137–156

    Article  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (1974) The choroid rete mirabile. I. Oxygen secretion and structure: comparison with the swimbladder rete mirabile. Biol Bull 146:116–136

    Article  CAS  Google Scholar 

  • Zhao Y, Ratnayake-Lecamwasam M, Parker SK, Cocca E, Camardella L, di Prisco G, Detrich III HW (1998) The major adult α-globin gene of Antarctic teleosts and its remnants in the hemoglobinless icefishes. Calibration of the mutational clock for nuclear genes. J Biol Chem 273:14745–14752

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of the reviewed work is financially supported by the Italian National Programme for Antarctic Research (PNRA), is in the framework of the SCAR programme Evolution and Biodiversity in the Antarctic (EBA), of the Coordination Action for Research Activities on Life in Extreme Environments (CAREX), and is in the framework of the IPY core programmes EBA and Marine Fishes of North East Greenland (TUNU-MAFIG). DG and RR acknowledge CNR (for Short-Term Mobility fellowships) and CAREX (for Transfer of Knowledge grants).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Verde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Verde, C., Giordano, D., Russo, R., Prisco, G.d. (2012). The Adaptive Evolution of Polar Fishes: Lessons From the Function of Hemoproteins. In: di Prisco, G., Verde, C. (eds) Adaptation and Evolution in Marine Environments, Volume 1. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27352-0_11

Download citation

Publish with us

Policies and ethics