Skip to main content

Landau Theory of Meta-learning

  • Conference paper
Security and Intelligent Information Systems (SIIS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7053))

Abstract

Computational Intelligence (CI) is a sub-branch of Artificial Intelligence paradigm focusing on the study of adaptive mechanisms to enable or facilitate intelligent behavior in complex and changing environments. Several paradigms of CI [like artificial neural networks, evolutionary computations, swarm intelligence, artificial immune systems, fuzzy systems and many others] are not yet unified in the common theoretical framework. Moreover, most of those paradigms evolved into separate machine learning (ML) techniques, where probabilistic methods are used complementary with CI techniques in order to effectively combine elements of learning, adaptation, evolution and Fuzzy logic to create heuristic algorithms. The current trend is to develop meta-learning techniques, since no single machine learning algorithm is superior to others in all-possible situations. The mean-field theory is reviewed here, as the promising analytical approach that can be used for unifying results of independent ML methods into single prediction, i.e. the meta-learning solution. The Landau approximation moreover describes the adaptive integration of information acquired from semi-infinite ensemble of independent learning agents, where only local interactions are considered. The influence of each individual agent on its neighbors is described within the well-known social impact theory. The final decision outcome for the meta-learning universal CI system is calculated using majority rule in the stationary limit, yet the minority solutions can survive inside the majority population, as the complex intermittent clusters of opposite opinion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plewczynski, D.: Brainstorming: Consensus Learning in Practice. Frontiers in Neuroinformatics (2009)

    Google Scholar 

  2. Ying, H., et al.: A fuzzy discrete event system approach to determining optimal HIV/AIDS treatment regimens. IEEE Trans. Inf. Technol. Biomed. 10(4), 663–676 (2006)

    Article  Google Scholar 

  3. Burton, J., et al.: Virtual screening for cytochromes p450: successes of machine learning filters. Comb. Chem. High Throughput Screen 12(4), 369–382 (2009)

    Article  Google Scholar 

  4. Capobianco, E.: Model validation for gene selection and regulation maps. Funct. Integr. Genomics 8(2), 87–99 (2008)

    Article  Google Scholar 

  5. Do, C.B., Foo, C.S., Batzoglou, S.: A max-margin model for efficient simultaneous alignment and folding of RNA sequences. Bioinformatics 24(13), i68–i76 (2008)

    Article  Google Scholar 

  6. Gesell, T., Washietl, S.: Dinucleotide controlled null models for comparative RNA gene prediction. BMC Bioinformatics 9, 248 (2008)

    Article  Google Scholar 

  7. Khandelwal, A., et al.: Computational models to assign biopharmaceutics drug disposition classification from molecular structure. Pharm. Res. 24(12), 2249–2262 (2007)

    Article  Google Scholar 

  8. Plewczynski, D., Spieser, S.A., Koch, U.: Assessing different classification methods for virtual screening. J. Chem. Inf. Model. 46(3), 1098–1106 (2006)

    Article  Google Scholar 

  9. Plewczynski, D.: Mean-field theory of meta-learning. Journal of Statistical Mechanics: Theory and Experiment 11, P11003 (2009)

    Article  Google Scholar 

  10. Joshi, A., Weng, J.: Autonomous mental development in high dimensional context and action spaces. Neural Netw. 16(5-6), 701–710 (2003)

    Article  Google Scholar 

  11. Sharma, R., Srinivasa, N.: Efficient Learning of VAM-Based Representation of 3D Targets and its Active Vision Applications. Neural Netw. 11(1), 153–171 (1998)

    Article  Google Scholar 

  12. Huang, P., Xu, Y.: SVM-based learning control of space robots in capturing operation. Int. J. Neural Syst. 17(6), 467–477 (2007)

    Article  Google Scholar 

  13. Knuth, K.H.: Intelligent machines in the twenty-first century: foundations of inference and inquiry. Philos. Transact. A Math. Phys. Eng. Sci. 361(1813), 2859–2873 (2003)

    Article  MathSciNet  Google Scholar 

  14. Lau, K.K., et al.: An edge-detection approach to investigating pigeon navigation. J. Theor. Biol. 239(1), 71–78 (2006)

    Article  MathSciNet  Google Scholar 

  15. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life 2(4), 417–434 (1995)

    Article  Google Scholar 

  16. Peters, J., Schaal, S.: Reinforcement learning of motor skills with policy gradients. Neural Netw. 21(4), 682–697 (2008)

    Article  Google Scholar 

  17. Qin, J., Li, Y., Sun, W.: A Semisupervised Support Vector Machines Algorithm for BCI Systems. Comput. Intell. Neurosci., 94397 (2007)

    Google Scholar 

  18. Reinkensmeyer, D.J., Emken, J.L., Cramer, S.C.: Robotics, motor learning, and neurologic recovery. Annu. Rev. Biomed. Eng. 6, 497–525 (2004)

    Article  Google Scholar 

  19. Roberts, S., et al.: Positional entropy during pigeon homing I: application of Bayesian latent state modelling. J. Theor. Biol. 227(1), 39–50 (2004)

    Article  MathSciNet  Google Scholar 

  20. Tani, J., et al.: Codevelopmental learning between human and humanoid robot using a dynamic neural-network model. IEEE Trans. Syst. Man Cybern. B Cybern. 38(1), 43–59 (2008)

    Article  Google Scholar 

  21. Miller, M.L., Blom, N.: Kinase-specific prediction of protein phosphorylation sites. Methods Mol. Biol. 527, 299–310 (2009)

    Article  Google Scholar 

  22. Tang, B.M., et al.: The use of gene-expression profiling to identify candidate genes in human sepsis. Am J. Respir. Crit. Care Med. 176(7), 676–684 (2007)

    Article  Google Scholar 

  23. Thomas, G., et al.: IDOCS: intelligent distributed ontology consensus system–the use of machine learning in retinal drusen phenotyping. Invest. Ophthalmol. Vis. Sci. 48(5), 2278–2284 (2007)

    Article  Google Scholar 

  24. la Cour, T., et al.: Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17(6), 527–536 (2004)

    Article  Google Scholar 

  25. Engelbrecht, A.P.: Computational Intelligence. John Wiley & Sons Ltd. (2007)

    Google Scholar 

  26. Abelson, R.P.: In: Frederksen, N., Gulliksen, H. (eds.) Contributions to Mathematical Psychology. Holt, Reinehart & Winston, New York (1964)

    Google Scholar 

  27. Nowak, A., Szamrej, J., Latane, B.: From Private Attitude to Public Opinion: A Dynamic Theory of Social Impact. Psychological Review 97(3), 362–376 (1990)

    Article  Google Scholar 

  28. Latane, B.: Am. Psychol. (36), 343 (1981)

    Google Scholar 

  29. Lewenstein, M., Nowak, A., Latane, B.: Statistical mechanics of social impact. Phys. Rev. A 45(2), 763–776 (1992)

    Article  MathSciNet  Google Scholar 

  30. Kohring, G.A.: Ising models of social impact: The role of cumulative advantage. Journal De Physique I 6(2), 301–308 (1996)

    Article  Google Scholar 

  31. Kohring, G.A.: J. Phys. I France (6), 301–308 (1996)

    Google Scholar 

  32. Plewczynski, D.: Landau theory of social clustering. Physica A 261(3-4), 608–617 (1998)

    Article  Google Scholar 

  33. Fronczak, A., Fronczak, P., Holyst, J.A.: Mean-field theory for clustering coefficients in Barabasi-Albert networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(4 pt 2), 046126 (2003)

    Article  Google Scholar 

  34. Lambiotte, R., Ausloos, M., Holyst, J.A.: Majority model on a network with communities. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(3 pt 1), 030101 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pascal Bouvry Mieczysław A. Kłopotek Franck Leprévost Małgorzata Marciniak Agnieszka Mykowiecka Henryk Rybiński

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Plewczynski, D. (2012). Landau Theory of Meta-learning. In: Bouvry, P., Kłopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka, A., Rybiński, H. (eds) Security and Intelligent Information Systems. SIIS 2011. Lecture Notes in Computer Science, vol 7053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25261-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25261-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25260-0

  • Online ISBN: 978-3-642-25261-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics