Skip to main content

Mathematically Founded Design of Adaptive Finite Element Software

  • Chapter
  • First Online:
Multiscale and Adaptivity: Modeling, Numerics and Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2040))

  • 1513 Accesses

Abstract

In these lecture notes we derive from the mathematical concepts of adaptive finite element methods basic design principles of adaptive finite element software. We introduce finite element spaces, discuss local refinement of simplical grids, the assemblage and structure of the discrete linear system, the computation of the error estimator, and common adaptive strategies. The mathematical discussion naturally leads to appropriate data structures and efficient algorithms for the implementation. The theoretical part is complemented by exercises giving an introduction to the implementation of solvers for linear and nonlinear problems in the adaptive finite element toolbox ALBERTA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis (Wiley- Interscience, New York, 2000)

    Google Scholar 

  2. D.N. Arnold, A. Mukherjee, L. Pouly, Locally adapted tetrahedral meshes using bisection. SIAM J. Sci. Comput. 22(2), 431–448 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Babuška, Error-bounds for finite element method. Numer. Math. 16, 322–333 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Babuška, W. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng. 3, 181–191 (1991)

    Article  MATH  Google Scholar 

  6. J. Bey, Tetrahedral grid refinement. Computing 55(4), 355–378 (1995)

    MathSciNet  MATH  Google Scholar 

  7. J. Bey, Simplicial grid refinement: On Freudenthal’s algorithm and the optimal number of congruence classes. Numer. Math. 85(1), 1–29 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Binev, W. Dahmen, R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math 97, 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Boschert, A. Schmidt, K.G. Siebert, in Numerical Simulation of Crystal Growth by the Vertical Bridgman Method, ed. by J.S. Szmyd, K. Suzuki. Modelling of Transport Phenomena in Crystal Growth, Development in Heat Transfer Series, vol. 6 (WIT Press, Southampton, 61–96 (36), 2000), pp. 315–330

    Google Scholar 

  10. S. Boschert, A. Schmidt, K.G. Siebert, E. Bänsch, G. Dziuk, K.W. Benz, T. Kaiser, in Simulation of Industrial Crystal Growth by the Vertical Bridgman Method, ed. by W. Jäger et al. Mathematics – Key Technology for the Future. Joint Projects Between Universities and Industry (Springer, Berlin, 2003), pp. 315–342

    Google Scholar 

  11. S. Brenner, R. Scott, The Mathematical Theory of Finite Element Methods. Springer Texts in Applied Mathematics 15 (2008)

    Google Scholar 

  12. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. R.A.I.R.O. Anal. Numer. R2, T 129–151 (1974)

    Google Scholar 

  13. M.O. Bristeau, R. Glowinski, J. Periaux, Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flows. Comp. Phys. Rep. 6, 73–187 (1987)

    Google Scholar 

  14. R. Carroll, G. Duff, J. Friberg, J. Gobert, P. Grisvard, J. Něcas, R. Seeley, Equations aux dérivées partielles. No. 19 in Seminaire de mathematiques superieures. Les Presses de

    Google Scholar 

  15. l’Université de Montréal (1966)

    Google Scholar 

  16. J.M. Cascón, C. Kreuzer, R.H. Nochetto, K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. P.G. Ciarlet, in The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40 (SIAM, PA, 2002)

    Google Scholar 

  18. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Fierro, A. Veeser, On the a posteriori error analysis for equations of prescribed mean curvature. Math. Comp. 72(244), 1611–1634 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. 1: Linearized steady problems. Springer Tracts in Natural Philosophy, 38 (1994)

    Google Scholar 

  21. D. Gilbarg, N.S. Trudinger, in Elliptic partial differential equations of second order. Classics in Mathematics (Springer, Berlin, 2001)

    Google Scholar 

  22. I. Kossaczk´y, A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)

    Google Scholar 

  23. D. Kiöster, O. Kriessl, K.G. Siebert, Design of finite element tools for coupled surface and volume meshes. Numer. Math. Theor. Meth. Appl. 1(3), 245–274 (2008)

    Google Scholar 

  24. C. Kreuzer, K.G. Siebert, Decay rates of adaptive finite elements with D¨orfler marking. Numer. Math. 117(4), 679–716 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Liu, B. Joe, Quality local refinement of tetrahedral meshes based on bisection. SIAM J. Sci. Comput. 16, 1269–1291 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.M.Maubach, Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16, 210–227 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. W.F. Mitchell, Unified multilevel adaptive finite element methods for elliptic problems. Ph.D. thesis, Department of Computer Science, University of Illinois, Urbana (1988)

    Google Scholar 

  28. P. Morin, R.H. Nochetto, K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. P.Morin, R.H. Nochetto, K.G. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Něcas, Sur une méthode pour resoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 16, 305–326 (1962)

    Google Scholar 

  31. R.H. Nochetto, K.G. Siebert, A. Veeser, in Theory of Adaptive Finite Element Methods: An Introduction, ed. by R.A. DeVore, A. Kunoth. Multiscale, Nonlinear and Adaptive Approximation (Springer, Berlin, 2009), pp. 409–542

    Google Scholar 

  32. R.H. Nochetto, A. Veeser, Primer of Adaptive Finite Element Methods in Multiscale and Adaptivity: Modeling, Numerics and Applications, ed. by G. Naldi, G. Russo. CIME-EMS Summer School in Applied Mathematics (Springer, New York, 2011), pp. 125–225

    Google Scholar 

  33. M.C. Rivara, Mesh refinement processes based on the generalized bisection of simplices. SIAM J. Numer. Anal. 21(3), 604–613 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Schmidt, K.G. Siebert, ALBERT — Software for scientific computations and applications. Acta Math. Univ. Comen. New Ser. 70(1), 105–122 (2001)

    MathSciNet  MATH  Google Scholar 

  35. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element Toolbox ALBERTA. Lecture Notes in Computational Science and Engineering 42 (Springer, Berlin, 2005)

    Google Scholar 

  36. A. Schmidt, K.G. Siebert, C.J. Heine, D. Köster, O. Kriessl, ALBERTA: An adaptive hierarchical finite element toolbox. http://www.alberta-fem.de/. Version 1.2 and 2.0

    Google Scholar 

  37. E.G. Sewell, Automatic generation of triangulations for piecewise polynomial approximation. Ph.D. dissertation, Purdue University, West Lafayette, IN (1972)

    Google Scholar 

  38. R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7(2), 245–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77(261), 227–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. C.T. Traxler, An algorithm for adaptive mesh refinement in n dimensions. Computing 59, 115–137 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Verfürth, A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comp. 62(206), 445–475 (1994)

    MATH  Google Scholar 

  43. R. Verfürth, in A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Adv. Numer. Math. (Wiley, Chichester, 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunibert G. Siebert .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siebert, K.G. (2011). Mathematically Founded Design of Adaptive Finite Element Software. In: Multiscale and Adaptivity: Modeling, Numerics and Applications. Lecture Notes in Mathematics(), vol 2040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24079-9_4

Download citation

Publish with us

Policies and ethics