Skip to main content

Microbial Degradation of Dye-Containing Wastewater

  • Chapter
  • First Online:
Microbial Degradation of Xenobiotics

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

Rapid industrialization and urbanization cause environmental pollution and release several xenobiotic compounds into the environment. Many of them have been listed as priority pollutants by the United States Environment Protection Agency (http://www.epa.gov) due to their toxicity and persistence in nature. Dyes are used by a large number of industrial processes, most notably textile, leather, plastics, food, pharmaceuticals and paints manufacturing industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuner E, Dilek FB (2004) Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem 39:623–631

    Article  CAS  Google Scholar 

  • Albuquerque MGE, Lopes AT, Serralheiro ML, Novais JM, Pinheiro HM (2005) Biological sulphate reductionand redox mediator effects on azo dye decolourisation inanaerobic–aerobic sequencing batch reactors. Enz Microb Technol 36(5–6):790–799

    Article  CAS  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic Press, San Diego

    Google Scholar 

  • Azmi W, Sani RK, Banerjee UC (1998) Biodegradation of triphenylmethane dyes. Enzyme Microbiol Technol 22:185–191

    Article  CAS  Google Scholar 

  • Ball AS, Betts WB, McCarthy AJ (1989) Degradation of lignin-related compounds by actinomycetes. Appl Environ Microbiol 55:1642–1644

    CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant R (1996) Microbial decolorization of textile-dye-containing effluents: a review. Biores Technol 58(3):217–227

    Article  CAS  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Staats M, Raaijmakers JM (2005) Assessment of genotypic diversity of antibiotic-producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Appl Environ Microbiol 71:993–1003

    Article  CAS  Google Scholar 

  • Beun JJ, Hendriks A, van Loosdrecht, Morgenroth MCM, Wilderer PAE, Heijnen JJ (1999) Aerobic granulation in a sequencing batch reactor. Water Res 33:2283–2290

    Article  CAS  Google Scholar 

  • Beydilli MI, Pavlostathis SG, Tincher WC (1998) Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Water Sci Technol 38:225–232

    Article  CAS  Google Scholar 

  • Blümel S, Stolz A (2003) Cloning and characterization of the gene coding for the aerobic azoreductase from Pigmentiphaga kullae K24. Appl Microbiol Biotechnol 62:186–190

    Article  Google Scholar 

  • Brown D, Hamburger B (1987) The degradation of dyestuffs: Part Ill-investigations of their ultimative biodegradability. Chemosphere 16:1539–1553

    Article  CAS  Google Scholar 

  • Brown D, Laboureur P (1983a) The degradation of dyestuffs: Part I. Primary biodegradation under anaerobic conditions. Chemosphere 12(3):397–404

    Article  CAS  Google Scholar 

  • Brown D, Laboureur P (1983b) The aerobic biodegradability of primary aromatic amines. Chemosphere 12(3):405–414

    Article  CAS  Google Scholar 

  • Bumpus JA (1995) Microbial degradation of azo dyes. Prog Ind Microbiol 32:157–176

    Article  CAS  Google Scholar 

  • Campos R, Kandelbauer A, Robra KH, Cavaco-Paulo A, Gubitz GM (2001) Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. J Biotechnol 89:131–139

    Article  CAS  Google Scholar 

  • Chinwetkitvanich S, Tuntoolvest M, Panswad T (2000) Anaerobic decolorization of reactive dyebath effluents by a two-stage UASB system with tapioca as a co-substarte. Water Res 34(8):2223–2232

    Article  CAS  Google Scholar 

  • Chung KT, Cerniglia CE (1992) Mutagenicity of azo dyes: structure-activity relationships. Mutat Res 277(3):201–220

    Article  CAS  Google Scholar 

  • Chung KT, Fulk GE, Egan M (1978) Reduction of azo dyes by intestinal anaerobes. Appl Environ Microbiol 35(3):558–562

    CAS  Google Scholar 

  • Cruz A, Buitron G (2001) Biodegradation of Disperse Blue 79 using sequenced anaerobic/aerobic biofilters. Water Sci Technol 44(4):159–166

    CAS  Google Scholar 

  • Dass SB, Reddy CA (1990) Characterization of extracellular peroxidases produced by acetate-buffered cultures of the lignin-degrading basidiomycete Phanerochaete chrysosporium. FEMS Microbiol Lett 57:221–224

    Article  CAS  Google Scholar 

  • DeFazio SAK, Lemley AT (1999) Electrochemical treatment of acid dye systems: sodium meta-bisulfite addition to the Andco system. J Environ Sci Heal A 34:217–240

    Article  Google Scholar 

  • Delee W, O’Neill C, Hawkes FR, Pinheiro HM (1998) Anaerobic treatment of textile effluents: a review. J Chem Technol Biotechnol 73(4):323–335

    Article  CAS  Google Scholar 

  • Dos Santos AB, Cervantes FJ, van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Biores Technol 98(12):2369–2385

    Article  CAS  Google Scholar 

  • Ekici P, Leupold G, Parlar H (2001) Degradability of selected azo dye metabolites in activated sludge systems. Chemosphere 44:721–728

    Article  CAS  Google Scholar 

  • Fewson CA (1988) Microbial metabolism of mandelate: a microsom of diversity. FEMS Microbiol Rev 54:85–110

    Article  CAS  Google Scholar 

  • Forgacs E, Cserhati T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Intl 30(7):953–971

    Article  CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Biores Technol 79:251–262

    Article  CAS  Google Scholar 

  • Fu L, Wen X, Xu L, Qian Y (2002) Removal of copper-phthalocyanine dye from wastewater by acclimated sludge under anaerobic or aerobic conditions. Process Biochem 37:1151–1156

    Article  CAS  Google Scholar 

  • Ganesh R (1992) Fate of azo dyes in sludges. Masters thesis, Virginia Polytechnic Institute and State University, pp 193

    Google Scholar 

  • Ghosh DK, Mandal A, Chaudhuri J (1992) Purification and partial characterization of two azoreductases from Shigella dysenteriae type 1. FEMS Microbiol Lett 77:229–233

    Article  CAS  Google Scholar 

  • Glenn J, Gold MH (1983) Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Technol 45:1741–1747

    CAS  Google Scholar 

  • Hao OJ, Kim H, Chang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30(4):449–505

    Article  CAS  Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    CAS  Google Scholar 

  • Henderson AL, Schmitt TC, Heinze, TM, Cerniglia CE (1997) Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl Environ Microbiol 63:4099–4101, http://www.epa.gov

    Google Scholar 

  • Isik M, Sponza DT (2004a) Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions. J Environ Sci Health. Part A—Toxic/Hazard Subst Environ Eng 39(4):1107–1127

    Article  Google Scholar 

  • Isik M, Sponza DT (2004b) Monitoring of toxicity and intermediates of C.I. Direct Black 38 azo dye through decolorization in an anaerobic/aerobic sequential reactor system. J Hazard Mater 114(1–3):29–39

    Article  CAS  Google Scholar 

  • Jank M, Koser H, Lucking F, Martienssen M, Wittchen S (1998) Decolorization and degradation of Erioglaucine (acid blue 9) dye in wastewater. Environ Technol 19:741–747

    Article  CAS  Google Scholar 

  • Jiang HL, Tay JH, Maszenan AM, Tay STL (2004) Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation. Appl Environ Microbiol 70:6767–6775

    Article  CAS  Google Scholar 

  • Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  Google Scholar 

  • Kapdan IK, Oztekin R (2003) Decolorization of textile dyestuff Reactive Orange 16 in fed-batch reactor under anaerobic condition. Enzyme Microb Technol 33(2–3):231–235

    Article  CAS  Google Scholar 

  • Kargi F, Eker S (2005) Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochem 40:2105–2111

    Article  CAS  Google Scholar 

  • Kirk JH, Bartlett PC (1987) Nonclinical Pseudomonas aeruginosa mastitis in a dairy herd. J Am Vet Med Assoc 184:671

    Google Scholar 

  • Lettinga G, van Velsen AFM, Hobma SM, de Zeeuw W, Klapwifk A (1980) Use of upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotech Bioeng 22:699–734

    Article  CAS  Google Scholar 

  • Lettinga G, Deman A, Van Der Last ARM, Wiegant W, Van Knippenberg K, Frijns J, Van Bueren JCL (1993) Anaerobic treatment of domestic sewage and wastewaters. Water Sci Technol 27(9):67–73

    CAS  Google Scholar 

  • Levine WG (1991) Metabolism of azo dyes: implication for detoxification and activation. Drug Metab Rev 23(3–4):253–309

    Article  CAS  Google Scholar 

  • Liu J, Qian L, Wessells RJ, Bidet Y, Jagla K, Bodmer R (2006) Hedgehog and RAS pathways cooperate in the anterior–posterior specification and positioning of cardiac progenitor cells. Dev Biol 290(2):373–38

    Article  CAS  Google Scholar 

  • Lourenco ND, Novais JM, Pinheiro HM (2000) Reactive textile dye colour removal in a sequencing batch reactor. Water Sci Technol 42(5–6):321–328

    CAS  Google Scholar 

  • Lourenco ND, Novais JM, Pinheiro HM (2001) Effect of some operational parameters on textile dye biodegradation in a sequential batch reactor. J Biotechnol 89(2–3):163–174

    Article  CAS  Google Scholar 

  • Loyd KC (1992) Anaerobic/Aerobic degradation of a textile dye wastewater. Masters Thesis, Virginia Polytechnic Institute and State University, p 184

    Google Scholar 

  • Luangdilok W, Paswad T (2000) Effect of chemical structures of reactive dyes on color removal by an anaerobic–aerobic process. Water Sci Technol 42(3–4):377–382

    CAS  Google Scholar 

  • McMullan G, Meehan C, Conneely A, Nirby N, Robinson T, Nigam P, Banat IM, Marchant R, Smyth WF (2001) Mini review: microbial decolourisation and degradation of textile dyes. Appl Microbiol Biotechnol 56(1–2):81–87

    Article  CAS  Google Scholar 

  • Meulenberg R, Rijnaarts HHM, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49

    Article  CAS  Google Scholar 

  • Mohan SV, Roa CN, Prasad KK, Karthikeyan J (2002) Treatment of simulated reactive yellow 22 (Azo) dye effluents using Spirogyra species. Waste Manag 22:575–582

    Article  Google Scholar 

  • Nigam P, Banat IM, Singh D, Marchant R (1996) Microbial process for the decolorization of textile effluent containing azo, diazo and reactive dyes. Process Biochem 31:435–442

    Article  CAS  Google Scholar 

  • Nigam P, Armour G, Banat IM, Singh D, Marchant R (2000) Physical removal of textile dyes and solid state fermentation of dye-adsorbed agricultural residues. Biores Technol 72:219–226

    Article  CAS  Google Scholar 

  • O’Neill C, Hawkes FR, Hawkes DL, Lourenco ND, Pinheiro HM, Delee W (1999) Colour in textile effluents-sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74(11):1009–1018

    Article  Google Scholar 

  • O’Neill C, Hawkes FR, Hawkes DW, Esteves S, Wilcox SJ (2000) Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water Res 34(8):2355–2361

    Article  Google Scholar 

  • Pagga U, Brown D (1986) The degradation of dyestuffs: part II. Behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15(4):479–491

    Article  CAS  Google Scholar 

  • Pagga UM, Taeger K (1994) Development of a method for adsorption of of dyestuffs on activated sludge. Water Res 28:1051–1057

    Article  CAS  Google Scholar 

  • Panswad T, Luangdilok W (2000) Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water Res 34(17):4177–4184

    Article  CAS  Google Scholar 

  • Panswad T, Iamsamer K, Anotai J (2001) Decolorisation of azo-reactive dye by polyphosphate and glycogen-accumulating organisms in an anaerobic-aerobic sequencing batch reactor. Biores Technol 76:151–159

    Article  CAS  Google Scholar 

  • Pasti MB, Crawford DL (1990) Isolation of microorganisms able to reductively transform aromatic compounds and their relevance to coal liquefaction. Can J Microbiol 37:902–907

    Article  Google Scholar 

  • Pearce CI, Lloyd JR, Guthrie JT (2003) The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes Pigm 58(3):179–196

    Article  CAS  Google Scholar 

  • Rafii F, Coleman T (1999) Cloning and expression in Escherichia coli of an azoreductase gene from Clostridium perfringens and comparison with azoreductase genes from other bacteria. J Basic Microbiol 39:29–35

    Article  CAS  Google Scholar 

  • Rajaguru P, Kalaiselvi K, Palanivel M, Subburam V (2000) Biodegradation of azo dyes in a sequential anaerobic-aerobic system. Appl Microbiol Biotechnol 54:268–273

    Article  CAS  Google Scholar 

  • Ramakrishna KR, Viraraghavan T (1997) Dye removal using low cost adsorbents. Water Sci Technol 36:189–196

    Article  CAS  Google Scholar 

  • Razo-Flores E, Luijten M, Donlon B, Lettinga G, Field J (1997) Biodegradation of selected azo dyes under methanogenic conditions. Water Sci Technol 36(6–7):65–72

    Article  CAS  Google Scholar 

  • Rieger PG, Meier HM, Gerle M, Vogt U, Groth T, Knackmuss HJ (2002) Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence. J Biotechnol 94:101–123

    Article  CAS  Google Scholar 

  • Robinson T, Chandran B, Nigam P (2001) Studies on the production of enzymes by white-rot fungi for the decolorization of textile dyes. Enzyme Microb Technol 29:575–579

    Article  CAS  Google Scholar 

  • Ryan U, Xiao L, Read C, Zhou L, Lal AA, Pavlasek I (2003) Identification of novel cryptosporidium genotypes from the Czech Republic. Appl Environ Microbiol 69(7):4302–4307

    Article  CAS  Google Scholar 

  • Sahinkaya E, Dilek FB (2007) Modelling chlorophenols degradation in a sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics. Biodegradation 18:427–437

    Article  CAS  Google Scholar 

  • Sani RK, Banerjee UC (1999) Decolorization of triphenylmethane dyes and textile and dye-stuff effluent by Kurthia sp. Enzyme Microbiol Technol 24:433–437

    Article  CAS  Google Scholar 

  • Sarnaik S, Kanekar P (1999) Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402. Appl Microbiol Biotechnol 52:251–254

    Article  CAS  Google Scholar 

  • Schliephake K, Mainwaring DE, Lonergan GT, Jones IK, Baker WL (2000) Transformation and degradation of the disazo dye Chicago Sky Blue by a purified laccase from Pycnoporus cinnabarinus. Enzyme Microbiol Technol 27:100–107

    Article  CAS  Google Scholar 

  • Seignez C, Adler N, Suard JC, Peringer P (1996) Aerobic and anaerobic biodegradability of 1-anthraquinone sulphonate. Appl Microbiol Biotechnol 45:719–722

    Article  CAS  Google Scholar 

  • Seshadri S, Bishop PL, Agha AM (1994) Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manag 14(2):127–137

    Article  CAS  Google Scholar 

  • Shaul GM, Holdsworth TJ, Dempsey CR, Dostal KA (1991) Fate of water soluble azo dyes in the activated sludge process. Chemosphere 22:107–119

    Article  CAS  Google Scholar 

  • Spadaro JT, Renganathan V (1994) Peroxidase-catalyzed oxidation of azo dyes: mechanism of disperse Yellow 3 degradation. Arch Biochem Biophys 312:301–307

    Article  CAS  Google Scholar 

  • Sponza DT, Isik M (2002) Decolorization and azo dye degradation by anaerobic/aerobic sequential process. Enzyme Microb Technol 31(1–2):102–110

    Article  CAS  Google Scholar 

  • Sponza DT, Isik M (2005) Reactor performances and fate of aromatic amines through decolorization of direct black 38 dye under anaerobic/aerobic sequentials. Process Biochem 40(1):35–44

    Article  CAS  Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56(1–2):69–80

    Article  CAS  Google Scholar 

  • Supaka N, Juntongjin K, Damronglerd S, Delia M-L, Strehaiano P (2004) Microbial decolorization of reactive azo dyes in a sequential anaerobic-aerobic system. Chem Eng J 99(2):169–176

    Article  CAS  Google Scholar 

  • Tan NCG (2001) Integrated and sequential anaerobic/aerobic biodegradation of azo dyes. PhD Thesis, Agro technology and Food Sciences, Sub-department of Environmental Technology, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Wackett LP (1996) Co-metabolism: is the emperor wearing any clothes? Curr Opin Biotechnol 7:321–325

    Article  CAS  Google Scholar 

  • Walker R (1970) The metabolism of azo compounds: a review of the literature. Food Cosmetics Toxicol 8(6):659–676

    Article  CAS  Google Scholar 

  • Walker GM, Weatherley LR (2000) Biodegradation and biosorption of acid anthraquinone dye. Environ Pollut 108:219–223

    Article  CAS  Google Scholar 

  • Wuhrmann K, Mechsner K, Kappeler T (1980) Investigation on rate-determining factors in the microbial reduction of azo dyes. Europe J Appl Microbiol Biotechnol 9:325–338

    Article  CAS  Google Scholar 

  • Yatome C, Ogawa T, Matsui M (1991) Degradation of crystal violet by Bacillus subtilis. J Environ Sci Eng 26:75–88

    Google Scholar 

  • Yatome C, Yamada S, Ogawa T, Matsui M (1993) Degradation of crystal violet by Nocardia corallina. Appl Microbiol Biotechnol 38:565–569

    Article  CAS  Google Scholar 

  • Zhang XY, Liu YX, Yan KL, Wu HJ (2007) Decolorization of anthraquinone-type dye by bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1. J Biosci Bioeng 104:104–110

    Article  CAS  Google Scholar 

  • Zhou WC, Zimmermann W (1993) Decolorization of industrial effluents containing reactive dyes by actinomycetes. FEMS Microbiol Lett 107:157–162

    Article  CAS  Google Scholar 

  • Zissi U, Lyberatos G (2000) Partial Degradation of p-aminoazobenzene by a defined mixed culture of Bacillus subtilis and Stenotrophomonas maltophilia. Biotechnol Bioeng 72(1):49–54

    Article  Google Scholar 

  • Zissi U, Lyberatos G, Pavlous S (1997) Biodegradation of p-aminobenzene by Bacillus subtilis under aerobic conditions. J Ind Microbiol Biotechnol 19:49–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Aligarh Muslim University, Aligarh (India) for providing research facilities and also thankful to the UGC (University Grants Commission) for providing financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pijush Kanti Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mondal, P.K., Chauhan, B. (2012). Microbial Degradation of Dye-Containing Wastewater. In: Singh, S. (eds) Microbial Degradation of Xenobiotics. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23789-8_12

Download citation

Publish with us

Policies and ethics