Skip to main content

Particle-Based Fracture Simulation on the GPU

  • Chapter
Transactions on Edutainment VI

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 6758))

Abstract

In this paper, a particle-based framework is presented to simulate the fracture phenomenon in computer graphics field. First, the object is represented as discrete particles, and then we introduce the Extend Discrete Element Method (EDEM) simulation to describe the interactions between neighbouring particles based on the material mechanics analysis. To process the fracture, a reverse idea to traditional method is used to cooperate with auxiliary cone algorithm, which called anti-fracture mechanism. The physical computation is executed on the GPU with CUDA and a uniform grid data structure is used in order to search the neighbouring element effectively. Experiment results demonstrate the feasibility and effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Imagire, T., Johan, H., Nishita, T.: A Fast Method for Simulating Destruction and the Generated Dust and Debris. The Visual Computer 25, 719–727 (2009)

    Article  Google Scholar 

  2. Terzopoulos, D., Fleischer, K.: Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture. In: Proceedings of Computer Graphics (SIGGRAPH 1988), pp. 269–278 (1988)

    Google Scholar 

  3. Norton, A., Turk, G., Bacon, B., Gerth, J., Sweeney, P.: Animation of Fracture by Physical Modeling. The Visual Computer 7(4), 210–219 (1991)

    Article  Google Scholar 

  4. O’Brien, J., Hodgins, J.: Graphical Modeling and Animation of Brittle Fracture. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 137–146. ACM, New York (1999)

    Google Scholar 

  5. Eric, G., O’Brien, J.F.: Real-Time Deformation and Fracture in a Game Environment. In: Proceedings of the 2009 ACM SIGGRAPH / Eurographics Symposium on Computer Animation. ACM, New York (2009)

    Google Scholar 

  6. Bao, Z., Hong, J.M., Teran, J.: Fracturing Rigid Materials. IEEE Transactions on Visualization and Computer Graphics, 370–378 (2007)

    Google Scholar 

  7. Su, J., Schroeder, C., Fedkiw, R.: Energy Stability and Fracture for Frame Rate Rigid Body Simulations. In: Proceedings of the 2009 ACM SIGGRAPH / Eurographics Symposium on Computer Animation, pp.155–164. ACM, Louisiana (2009)

    Google Scholar 

  8. Desbrun, M., Cani, M.P.: Animating Soft Substances with Implicit Surfaces. In: Proceedings of SIGGRAPH 1995, pp. 287–290 (1995)

    Google Scholar 

  9. Muller, M., Keiser, R., Nealen, A.: Point-based Animation of Elastic, Plastic and Melting Objects. In: Proceedings of ACM Siggraph/Eurographics Symposium on Computer Animation, pp. 141–151. Eurographics Association, Grenoble (2004)

    Google Scholar 

  10. Muller, M., Heidelberger, B., Teschner, M.: Meshless Deformations Based on Shape Matching. ACM Trans. Graph. 24(3), 471–478 (2005)

    Article  Google Scholar 

  11. Pauly, M., Keiser, R., Adams, B.: Meshless Animation of Fracturing Solids. ACM Trans. Graph. 24(3), 957–964 (2005)

    Article  Google Scholar 

  12. Guo, X., Qin, H.: Real-time Meshless Deformation. Comp. Animat. Virt. World 16(3-4), 189–200 (2005)

    Article  Google Scholar 

  13. Bell, N., Yu, Y., Mucha, P.: Particle-based Simulation of Granular Materials. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 77–86. ACM, New York (2005)

    Chapter  Google Scholar 

  14. Green, S.: CUDA Particles. nVidia CUDA SDK Whitepaper (2008)

    Google Scholar 

  15. Harada, T.: The Grid: Real-time Rigid Body Simulation on GPUs. GPU Gem 3 (2008)

    Google Scholar 

  16. Georgii, J., Westermann, R.: Mass-spring System on the GPU. Simulation Modelling Practice and Theory 13, 693–702 (2005)

    Article  Google Scholar 

  17. Liu, W., Schmidt, B., Voss, G., Muller-Wittig, W.: Accelerating Molecular Dynamics Simulations Using Graphics Processing Units with CUDA. Computer Physics Communications 179, 634–641 (2008)

    Article  Google Scholar 

  18. Meguro, K., Hakuno, M.: Fracture Analyses of Concrete Structures by the Modified Distinct Element Method. Structural Eng./Earthquake Eng. JSCE 6, 283–294 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ning, J., Xu, H., Zeng, L., Li, S. (2011). Particle-Based Fracture Simulation on the GPU. In: Pan, Z., Cheok, A.D., Müller, W. (eds) Transactions on Edutainment VI. Lecture Notes in Computer Science, vol 6758. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22639-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22639-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22638-0

  • Online ISBN: 978-3-642-22639-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics