Skip to main content

Interference of Heavy Metal Toxicity with Auxin Physiology

  • Chapter
  • First Online:
Metal Toxicity in Plants: Perception, Signaling and Remediation

Abstract

Auxins are important phytohormones involved in the coordination of plant growth and defence. In this chapter, we summarize auxin functions in plant biology and identify interactions with heavy metal toxicity. Cadmium induces the formation of reactive oxygen species, which in turn activate auxin oxidases. Auxin oxidases lead to an increased degradation of auxin and thereby are likely to decrease the activities of many genes involved in growth processes. Evidence supporting this hypothetic signalling cascade from heavy metals to eventual growth reductions comes from auxin feeding experiments that ameliorate Cd toxicity, positive effects of auxin producing endophytes on Cd tolerance and by monitoring endogenous auxin physiology with auxin reporter lines of Arabidopsis thaliana and Populus × canescens. Available data for essential micronutrients suggest that they interact with auxin physiology in a manner similar to Cd when present in excess.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arduini I, Godbold DL, Onnis A (1996) Cadmium and copper uptake and distribution in Mediterranean tree seedlings. Physiol Plant 97:111–117

    Article  CAS  Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  PubMed  CAS  Google Scholar 

  • Bartel B, LeClere S, Magidin M, Zolman BK (2001) Inputs to the active indole-3-acetic acid pool: de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. J Plant Growth Regul 20:198–216

    Article  CAS  Google Scholar 

  • Beffa R, Martin HV, Pilet PE (1990) In vitro oxidation of indole acetic acid by soluble auxin-oxidases and peroxidases from maize roots. Plant Physiol 94:485–491

    Article  PubMed  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848

    Article  PubMed  CAS  Google Scholar 

  • Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Plant Biol Pathol 328:23–31

    CAS  Google Scholar 

  • Chapman EJ, Estelle M (2009) Mechanisms of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  PubMed  CAS  Google Scholar 

  • Clere SL, Tellez R, Rampey RA, Matsuda SPT, Bartel B (2002) Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J Biol Chem 277:20446–20452

    Article  Google Scholar 

  • Dimkpa CO, Merten D, Svatos A, Buechel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41:154–162

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  PubMed  CAS  Google Scholar 

  • Ducic T, Polle A (2005) Manganese and copper toxicity and detoxification in plants. Braz J Plant Physiol 172:115–122

    Google Scholar 

  • Elobeid M (2008) Physiology of auxin in response to environmental stress and heavy metal pollution. Thesis University of Göttingen, Optimus Verlag, Göttingen, Germany

    Google Scholar 

  • Elobeid M, Polle A (2010) Response of grey poplar (Populus × canescens) to copper stress. Global Science Books, Plant Stress (Special Issue 1):82–86

    Google Scholar 

  • Faessler E, Evangelou MW, Robinson BH, Schulin R (2010) Effects of indole-3-acetic acid (IAA) on sunflower growth and heavy metal uptake in combination with ethylene diamine disuccinic acid (EDDS). Chemosphere 80:901–907

    Article  CAS  Google Scholar 

  • Farrell RE, McArthur DFE, Van Rees KCJ (2005) Net Cd2+ flux at the root surface of durum wheat (Triticum turgidum L. var. durum) cultivars in relation to cultivar differences in Cd accumulation. Can J Plant Sci 85:103–107

    Article  CAS  Google Scholar 

  • Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Guo DS, Xi YY, Wang AY, Zhang J, Yuan XY (1999) Contribution of auxin to the uptake of nickel and cadmium in maize plants. Biomed Environ Sci 12:170–176

    PubMed  CAS  Google Scholar 

  • Hagen G, Uhrhammers N, Guilfoyle TJ (1988) Regulation of expression of an auxin-induced soybean sequence by cadmium. J Biol Chem 263:6442–6446

    PubMed  CAS  Google Scholar 

  • Haluskova L, Valentovicova K, Huttova J, Mistrik I, Tamas L (2010) Elevated indole-3-acetic acid peroxidase activity is involved in the cadmium-induced hydrogen peroxide production in barley root tip. Plant Growth Regul 62:59–64

    Article  CAS  Google Scholar 

  • He J, Qin J, Long LY, Ma YL, Li H, Li K, Jiang XN, Liu TX, Polle A, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plant. doi:10.1111/j.1399-3054.2011.01487.x

  • Huang YX, Liao BH, Xiao LT, Liu SC, Wang ZK (2006) Effects of Cd2+ on seedling growth and phytohormone contents of Glycine max. J Environ Sci 27:1398–1401 (In Chinese)

    CAS  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS Lett 276:3148–3162

    CAS  Google Scholar 

  • Jain M, Kaur N, Tyagi AK, Khurana JP (2006) The auxin-responsive GH3 family in rice (Oryza sativa). Funct Integr Genomics 6:36–46

    Article  PubMed  CAS  Google Scholar 

  • Junghans U, Polle A, Düchting P, Weiler E, Kuhlmann B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in the xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531

    Article  PubMed  CAS  Google Scholar 

  • Kastori R, Petrovic M, Petrovic N (1992) Effect of excess lead, cadmium, copper and zinc on water relations in sunflower. J Plant Nutr 15:2427–2439

    Article  CAS  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    Article  PubMed  CAS  Google Scholar 

  • Liszkay A, Kenk B, Schopfer P (2003) Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth. Planta 217:658–667

    Article  PubMed  CAS  Google Scholar 

  • Liu CP, Shen ZG, Li XD (2007) Accumulation and detoxification of cadmium in Brassica pekinesis and B. chinesis. Plant Biol 51:116–120

    Article  CAS  Google Scholar 

  • Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed) Plant hormones: physiology, biochemistry and molecular biology, 2nd edn. Kluwer, Dordrecht, pp 509–530

    Google Scholar 

  • Magidin M, Pittman JK, Hirschi KD, Bartel B (2003) ILR2, a novel gene regulating IAA conjugate sensitivity and metal transport in Arabidopsis thaliana. Plant J 35:523–534

    Article  PubMed  CAS  Google Scholar 

  • Mei H, Cheng NH, Zhao J, Park SH, Escareno RA, Pittman JK, Hirsch KD (2009) Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytol 183:95–105

    Article  PubMed  CAS  Google Scholar 

  • Morgan PW, Joham HE, Amin JV (1966) Effect of manganese toxicity on the indolacetic acid oxidase system of cotton. Plant Physiol 41:718–724

    Article  PubMed  CAS  Google Scholar 

  • Morgan PW, Taylor DM, Joham HE (1976) Manipulation of IAA-oxidase activity and auxin-deficiency symptoms in intact cotton plants with manganese nutrition. Physiol Plant 37:149–156

    Article  CAS  Google Scholar 

  • Normanly J, Slovin JP, Cohen JD (1995) Rethinking auxin biosynthesis and metabolism. Plant Physiol 107:323–329

    PubMed  CAS  Google Scholar 

  • Ouzounidou G, Ilias I (2005) Hormone-induced protection of sunflower photosynthetic apparatus against copper stress. Plant Biol 49:223–228

    Article  CAS  Google Scholar 

  • Park JE, Park JY, Kim YS, Staswick PE, Jeon J, Yun J, Kim SY, Kim JM, Lee YH, Park CM (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282:10036–10046

    Article  PubMed  CAS  Google Scholar 

  • Pickett FB, Wilson AK, Estelle M (1990) The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466

    Article  PubMed  CAS  Google Scholar 

  • Pineros MA, Shaff JE, Kochian V (1998) Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol 116:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Polle A, Schützendübel A (2003) Heavy metal signalling in plants: linking cellular and organismic responses. In: Hirt H, Shinozaki K (eds) Topics in current genetics. Plant stress responses, vol 4. Springer, Berlin, pp 187–215

    Google Scholar 

  • Popko J, Hänsch R, Mendel RR, Polle A, Teichmann T (2010) The role of abscisic acid and auxin in the response of poplar to abiotic stress. Plant Biol 12:242–258

    Article  PubMed  CAS  Google Scholar 

  • Rampey RA, Clere SL, Kowalczyk M, Ljung K, Sandberg G, Bartel B (2004) A family of auxin-conjugate hydrolases that contribute to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol 135:978–988

    Article  PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Schopfer P (2001) Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J 28:679–688

    Article  PubMed  CAS  Google Scholar 

  • Schopfer P, Liszkay A (2006) Plasma membrane-generated reactive oxygen intermediates and their role in cell growth of plants. Biofactors 28:73–81

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in pine roots. Plant Physiol 127:887–898

    Article  PubMed  Google Scholar 

  • Schützendübel A, Nikolova P, Rudolf C, Polle A (2002) Cadmium and H2O2-induced oxidative stress in Populus × canescens roots. Plant Physiol Biochem 40:577–584

    Article  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterisation of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  PubMed  CAS  Google Scholar 

  • Stonier T, Rodriguez-Tormes F, Yoneda Y (1968) Studies on auxin protectors. IV. The effect of manganese on auxin protector-I of the Japanese morning glory. Plant Physiol 43:69–72

    Article  PubMed  CAS  Google Scholar 

  • Teichmann T, Bolu-Arianto WH, Olbrich A, Langenfeld-Heyser R, Göbel C, Grzeganek P, Feussner I, Hänsch R, Polle A (2008) GH3::GUS depicts cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol 28:1305–1315

    PubMed  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Vernoux T, Besnard F, Traas J (2010) Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol 2:1–14

    Article  Google Scholar 

  • Wojcik M, Tukiendorf A (2005) Cadmium uptake, localization and detoxification in Zea mays. Plant Biol 49:237–245

    Article  CAS  Google Scholar 

  • Woodward WW, Bartel B (2005) Auxin: regulation, action and interaction. Ann Bot 95:707–735

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Yin H, Liu XJ, Li X (2010a) Salt affects plant Cd-stress responses by modulating growth and Cd accumulation. Planta 231:449–459

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q (2010b) Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 326:321–330

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  • Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64

    Article  PubMed  CAS  Google Scholar 

  • Zhou JM, Dang Z, Chen NC, Xu SG, Xie ZY (2007) Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid. J Environ Sci 28:2085–2088 (In Chinese)

    CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to the Ulrich Foundation (Göttingen, Germany) for financial support to M. Elobeid for the preparation of this chapter and the German Science Foundation for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Polle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elobeid, M., Polle, A. (2012). Interference of Heavy Metal Toxicity with Auxin Physiology. In: Gupta, D., Sandalio, L. (eds) Metal Toxicity in Plants: Perception, Signaling and Remediation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22081-4_12

Download citation

Publish with us

Policies and ethics