Skip to main content
Log in

Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effect of excessive Cd on the growth and metal uptake by leafy vegetables Brassica chinensis L. (cv. Wuyueman) and Brassica pekinensis (Lour.) Rupr. (cv. Qingyan 87-114) were studied in hydroponic solution culture. The Cd concentration higher than 10 µM significantly decreased the root elongation and leaf chlorophyll contents of both plant species. The shoots of B. pekinensis had significantly higher concentrations of total and water-soluble Cd than B. chinensis. The roots of both species accumulated more Cd than the shoots in all the Cd treatments. Most of the Cd in the roots was found in the cell walls. The shoot/root ratio of Cd concentrations in B. pekinensis was always greater than that in B. chinensis. But, the concentration and proportion of Cd in the cell walls in B. chinensis were higher than that in B. pekinensis. Cadmium treatments also increased the concentrations of total non-protein thiols (NPT) in the shoots of the both species. A significant correlation was found between the concentrations of soluble Cd and NPT in plant shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GSH:

glutathion

NPT:

non-protein thiols

PC:

phytochelatins

References

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.

    PubMed  CAS  Google Scholar 

  • Baker, A.J.M.: Metal tolerance.-New Phytol. 106: 93–111, 1987.

    Article  CAS  Google Scholar 

  • Baker, A.J.M., Brooks, R.R.: Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry.-Biorecovery 1: 81–126, 1989.

    CAS  Google Scholar 

  • Cakmak, I., Marschner, H.: Enhanced superoxide radical production in roots of zinc deficient plants.-J. exp. Bot. 39: 1449–1460, 1988.

    Article  Google Scholar 

  • Carrier, P., Baryla, A., Havaux, M.: Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil.-Planta 216: 939–950, 2003.

    PubMed  CAS  Google Scholar 

  • Ellman, G.L.: Tissue sulfhydryl groups.-Arch. Biochem. Biophys. 82: 70–77, 1959.

    Article  PubMed  CAS  Google Scholar 

  • Hall, J.L.: Cellular mechanisms for heavy metal detoxification and tolerance.-J. exp. Bot. 53: 1–11, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Hart, J.J., DiTomaso, J.M., Linscott, D.L., Kochian, L.V.: Characterization of the transport and cellular compartmentation of paraquat in roots of intact maize seedlings.-Pestic. Biochem. Physiol. 43: 212–222, 1992.

    Article  CAS  Google Scholar 

  • Howden, R., Anderson, C.R., Goldsbrough, P.B., Cobbett, C.S.: A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana.-Plant Physiol. 107: 1067–1073, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Kneer, R., Zenk, M.H.: Phytochelatins protect plant enzymes from heavy metal poisoning.-Phytochemistry 31: 2663–2667, 1992.

    Article  CAS  Google Scholar 

  • Kumar, P.B.A.N., Dushenkov, V., Motto, H., Raskin, I.: Phytoextraction: the use of plants to remove heavy metals from soils.-Environ. Sci. Technol. 29: 1232–1238, 1995.

    Article  CAS  Google Scholar 

  • Lou, L.Q., Shen, Z.G., Li, X.D.: The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils.-Environ. exp. Bot. 51: 111–120, 2004.

    Article  CAS  Google Scholar 

  • Lucarini, M., Canali, R., Cappelloni, M., Di Lullo, G., Lombardi-Boccia, G..: In vitro calcium availability from Brassica vegetables (Brassica oleracea L.) and as consumed in composite dishes.-Food Chem. 64: 519–523, 1999.

    Article  CAS  Google Scholar 

  • Macfie, S.M., Welbourn, P.M.: The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae).-Arch. Environ. Contamin. Toxicol. 39: 413–419, 2000.

    Article  CAS  Google Scholar 

  • Pandey, N., Sharma, C.P.: Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage.-Plant Sci. 163: 753–758, 2002.

    Article  CAS  Google Scholar 

  • Ramos, I., Esteban, E., Lucena, J.J., Gárate, A.: Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction.-Plant Sci. 162: 761–767, 2002.

    Article  CAS  Google Scholar 

  • Rauser, W.E.: Phytochelatins and related peptides — structure, biosynthesis, and function.-Plant Physiol. 109: 1141–1149, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Reeves, R.D., Baker, A.J.M.: Metal-accumulating plants.-In: Raskin, I., Ensley, B.D. (ed.): Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. Pp. 193–229. John Wiley & Sons, New York 2000.

    Google Scholar 

  • Ru, S.H., Wang, J.Q., Su, D.C.: Characteristics of Cd uptake and accumulation in two Cd accumulator oilseed rape species.-J. environ Sci. China 16: 594–598, 2004.

    PubMed  CAS  Google Scholar 

  • Salt, D.E., Prince, R.C., Pickering, I.J., Raskin, I.: Mechanisms of cadmium mobility and accumulation in Indian mustard.-Plant Physiol. 109: 1427–1433, 1995.

    PubMed  CAS  Google Scholar 

  • Sanità di Toppi, L., Gabbrielli, R.: Response to cadmium in higher plants.-Environ. exp. Bot. 41: 105–130, 1999.

    Article  Google Scholar 

  • Scandalios J.G.: Oxygen stress and superoxide dismutase.-Plant Physiol. 101: 7–12, 1993.

    PubMed  CAS  Google Scholar 

  • Skórzyńska-Polit, E., Drążkiewicz, M., Krupa, Z.: The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana.-Biol. Plant. 47: 71–78, 2003/4.

    Article  Google Scholar 

  • Stolt, J.P., Sneller, F.E.C., Bryngelsson, T., Lundborg, T., Schat, H.: Phytochelatin and cadmium accumulation in wheat.-Environ. exp. Bot. 49: 21–28, 2003.

    Article  CAS  Google Scholar 

  • Van Assche, F., Clijsters, H.: Effects of metals on enzyme activity in plants.-Plant Cell Environ. 13: 195–206, 1990.

    Article  Google Scholar 

  • Vassilev, A., Lidon, F., Scotti, P., Da Graca, M., Yordanov, I.: Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants.-Biol. Plant. 48: 153–156, 2004.

    Article  CAS  Google Scholar 

  • Wagner, G.J.: Accumulation of cadmium in crop plants and its consequences to human health.-Adv. Agron. 51: 173–212, 1993.

    Article  CAS  Google Scholar 

  • Wójcik, M., Vangronsveld, J., D’Haen, J., Tukiendorf, A.: Cadmium tolerance in Thlaspi caerulescens. II. Localization of cadmium in Thlaspi caerulescens.-Environ. exp. Bot. 53: 163–171, 2005.

    Google Scholar 

  • Zhang, F.Q., Li, X.D., Wang, C.C., Shen, Z.G.: Effect of cadmium on autoxidation rate of tissue and inducing accumulation of free proline in seedlings mung bean.-J. Plant Nutr. 23: 357–368, 2000.

    CAS  Google Scholar 

  • Zhang, F.Q., Shi, W.Y., Jin, Z.X., Shen, Z.G.: Response of antioxidative enzymes in cucumber chloroplasts to cadmium toxicity.-J. Plant Nutr. 26: 1779–1788, 2003.

    Article  CAS  Google Scholar 

  • Zornoza, P., Vázquez, S., Esteban, E., Fernández-Pascual, M., Carpena, R.: Cadmium-stress in nodulated white lupin: strategies to avoid toxicity.-Plant Physiol Biochem. 40: 1003–1009, 2002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. G. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C.P., Shen, Z.G. & Li, X.D. Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis . Biol Plant 51, 116–120 (2007). https://doi.org/10.1007/s10535-007-0023-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-007-0023-y

Additional key words

Navigation