Skip to main content

Finite Elements Solutions of Boundary Value Problems Relevant to Geodesy

  • Conference paper
  • First Online:
VII Hotine-Marussi Symposium on Mathematical Geodesy

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 137))

Abstract

The paper is aimed at a solution to the boundary value problem (BVP) with the Dirichlet and the Neumann boundary conditions by the finite element method (FEM). The computational domain for global gravity field modeling is 3D space above the Earth bounded by the Earth’s surface and upper spherical boundary. For local gravity field modeling on continental scale we choose only part of the Earth’s surface and create four additional side boundaries. On the Earth’s surface, the gravity disturbances generated from DNSC08 altimetry-derived data or EGM2008 geopotential model are considered. The disturbing potential on the upper spherical and side boundaries is generated from satellite model ITG-Grace. The derivation of FEM for this problem including the main discretization ideas is presented. Global quasigeoidal experiments and local refinements are performed. Later, solutions gained with linear and quadratic elements are compared and the influence of Dirichlet BC on the side boundaries on the local solution is studied. All numerical results are tested with potential generated from EGM2008 geopotential model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen OB, Knudsen P, Berry P (2008) The DNSC08 ocean wide altimetry derived gravity field. Presented at EGU-2008, Vienna, Austria.

    Google Scholar 

  • ANSYS www.ansys.com

  • Brenner SC, Scott LR (2002) The Mathematical Theory of Finite Element Methods 2nd edn. Springer, New York

    Google Scholar 

  • Čunderlík R, Mikula K, Mojzeš M (2008) Numerical solution of the linearized fixed gravimetric boundary-value problem. J Geodes 82(1):15–29

    Article  Google Scholar 

  • Fašková Z, Čunderlík R, Mikula K (2009) Finite element method for solving geodetic boundary value problems. J Geodes doi: 10.1007/s00190-009-0349-7

    Google Scholar 

  • Holota P (1997) Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation J Geodes 71(10):640–651

    Google Scholar 

  • Holota P (2005) Neumann’s boundary-value problem in studies on Earth gravity field: weak solution 50 years of Research Institute of Geodesy, Topography and Cartography, vol 50(34), Prague, pp 49–69

    Google Scholar 

  • Klees R (1992) Loesung des fixen geodaetischen Randwertprolems mit Hilfe der Randelementmethode DGK. Reihe C., Nr. 382, Muenchen

    Google Scholar 

  • Klees R, Van Gelderen M, Lage C, Schwab C (2001) Fast numerical solution of the linearized Molodensky prolem. J Geodesy 75:349–362

    Article  Google Scholar 

  • Koch KR, Pope AJ (1972) Uniqueness and existence for the godetic boundary value problem using the known surface of the earth. Bull Géod 46:467–476

    Article  Google Scholar 

  • Mayer-Gürr T (2007) ITG-Grace03s: The latest GRACE gravity field solution computed in Bonn, presentation at GSTM+SPP, Potsdam

    Google Scholar 

  • Meissl P (1981) The Use of Finite Elements in Physical Geodesy Report 313, Geodetic Science and Surveying, The Ohio State University

    Google Scholar 

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth Gravitational Model to Degree 2160: EGM2008 General Assembly of EGU, Vienna, Austria

    Google Scholar 

  • Rektorys K (1974) Variační metody v inženýrských problémech a v problémech matematické fyziky STNL, Praha. (In Czech)

    Google Scholar 

  • Shaofeng B, Dingbo C (1991) The finite element method for the geodetic boundary value problem. Manuscripta Geodetica 16:353–359

    Google Scholar 

  • Sideris MG, Schwarz KP (1986) Solving Molodensky’s series by fast Fourier transform techniques Bull Geod 60:51–63

    Google Scholar 

  • Tscherning CC (1978) Collocation and least squares methods as a tool for handling gravity field dependent data obtained through space research techniques. In: Hieber S, Guyenne TD (eds) On space oceanography, navigation and geodynamics European workshop. European Space Agency, pp 141–149

    Google Scholar 

Download references

Acknowledgement

Authors gratefully thank to the financial support given by grant VEGA 1/0269/09, APVV-LPP-216-06 and APVV-0351-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Fašková .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fašková, Z., Čunderlík, R., Mikula, K. (2012). Finite Elements Solutions of Boundary Value Problems Relevant to Geodesy. In: Sneeuw, N., Novák, P., Crespi, M., Sansò, F. (eds) VII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22078-4_30

Download citation

Publish with us

Policies and ethics