Skip to main content

Combinations of Bisphosphonates and Classical Anticancer Drugs: A Preclinical Perspective

  • Chapter
  • First Online:
Prevention of Bone Metastases

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 192))

Abstract

Bone metastases are frequent complications in advanced breast and prostate cancer among others, resulting in increased risk of fractures, pain, hypercalcaemia of malignancy and a reduction in patient independence and mobility. Bisphosphonates (BPs) are in wide clinical use for the treatment of cancer-induced bone disease associated with advanced cancer, due to their potent ability to reduce skeletal-related events (SREs) and improve quality of life. Despite the profound effect on bone health, the majority of clinical studies have failed to demonstrate an overall survival benefit of BP therapy. There is increasing preclinical evidence to suggest that inclusion of the most potent nitrogen-containing BPs (NBPs) in combination therapy results in increased antitumour effects and improved survival, but that the particular schedules used are of key importance to achieve optimal benefit. Recent clinical data have suggested that there may be effects of adjuvant NBP therapy on breast tumours outside the skeleton. These findings have led to renewed interest in the use of BPs in cancer therapy, in particular how they can be included as part of adjuvant protocols. Here we review the key data reported from preclinical model systems investigating the effects of combination therapy including BPs with particular emphasis on breast and prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANZAC:

AdditioN of Zoledronic Acid to neo-adjuvant Combination chemotherapy

AZURE:

Adjuvant Zoledronic acid redUce Recurrence

bFGF:

basic Fibroblast Growth Factor

BP:

BisPhosphonate

DMC:

Dorsal Microcirculation Chamber

EC:

Endothelial Cells

ER:

Estrogren Receptor

FEC:

5-Fluorouracil + Epirubicin + Cyclophosphamide

HER2:

Human Epidermal growth factor Receptor 2

HuDMEC:

Human Dermal Microvascular Endothelial Cells

HUVEC:

Human Umbilical Vein Endothelial Cells

GGOH:

GeranylGeraniol

μCT analysis:

micro-Computed Tomography

NBP:

Nitrogen-containing BisPhosphonate

NSCLC:

Non-Small Cell Lung Cancer

PDGF:

Platelet-Derived Growth Factor

PSA:

Prostate Specific Antigen

SCID:

Severe Combined ImmunoDeficiency

SCLC:

Small Cell Lung Cancer

SRE:

Skeletal Related Event

UFT:

TegaFur-Uracil

VEGF:

Vascular Endothelial Growth Factor

ZANTE:

Zoledronic acid ANd TaxoterE

References

  • Belotti D, Vergani V, Drudis T et al (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1849

    PubMed  CAS  Google Scholar 

  • Bezzi M, Hasmim M, Bieler G et al (2003) Zoledronate sensitizes endothelial cells to tumor necrosis factor-induced programmed cell death: evidence for the suppression of sustained activation of focal adhesion kinase and protein kinase B/Akt. J Biol Chem 278:43603–43614

    Article  PubMed  CAS  Google Scholar 

  • Boissier S, Magnetto S, Frappart L et al (1997) Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Cancer Res 57:3890–3894

    PubMed  CAS  Google Scholar 

  • Brown HK, Holen I (2009a) Anti-tumour effects of bisphosphonates-what have we learned from in vivo models? Curr Can Drug Targets 9(7):807–823

    Article  CAS  Google Scholar 

  • Brown HK, Ottewell PD, Coleman RE et al. (2009b) The kinetochore protein Cenp-F is a potential novel target for zoledronic acid in breast cancer cells. J Cell Mol Med 8 [Epub ahead of print]

    Google Scholar 

  • Brubaker KD, Brown LG, Vessella RL et al (2006) Administration of zoledronic acid enhances the effects of docetaxel on growth of prostate cancer in the bone environment. BMC Cancer 6:15

    Article  PubMed  Google Scholar 

  • Clezardin P (2011) Bisphosphonates’ antitumor activity: An unraveled side of a multifaceted drug class. Bone 48(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Clézardin P, Benzaïd I, Croucher PI (2011) Bisphosphonates in preclinical bone oncology. Bone 49(1):66–70

    Article  PubMed  Google Scholar 

  • Clezardin P, Ebetino FH, Fournier PGJ (2005) Bisphosphonates and cancer-induced bone disease: beyond their anti-resorptive activity. Cancer Res 65(12):4971–4974

    Article  PubMed  CAS  Google Scholar 

  • Clyburn RD, Reid P, Evans CA et al (2010) Increased anti-tumour effects of doxorubicin and zoledronic acid in prostate cancer cells in vitro: supporting the benefits of combination therapy. Cancer Chemother Pharmacol 65:969–978

    Article  PubMed  CAS  Google Scholar 

  • Coleman RE (2007) Emerging strategies in bone health management for the adjuvant patient. Semin Oncol 34(Suppl 4):S11–S16

    Article  PubMed  CAS  Google Scholar 

  • Coleman RE, Brown J, Terpos E et al (2008) Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat Rev 34(7):629–639

    Article  PubMed  CAS  Google Scholar 

  • Coleman RE, Winter MC, Cameron D et al (2010) The effects of adding zoledronic acid to neoadjuvant chemotherapy on tumour response: explanatory evidence for direct anti-tumour activity in breast cancer. Brit J Cancer 102:1099–1105

    Article  PubMed  CAS  Google Scholar 

  • Corey E, Brown LG, Quinn JE et al (2003) Zoledronic Acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clin Cancer Res 9:295–306

    PubMed  CAS  Google Scholar 

  • Coscia M, Quaglino E, Iezzi M et al (2010) Zoledronic acid repolarizes tumour-associated macrophages and inhibits mammary carcinogenesis by targeting the mevalonate pathway. J Cell Mol Med 14(12):2803–28015

    Article  PubMed  CAS  Google Scholar 

  • Daubine F, Le Gall C, Gasser J et al (2007) Antitumour effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis. J Natl Cancer Inst 99:322–330

    Article  PubMed  CAS  Google Scholar 

  • Duivenvoorden WC, Vukmirović-Popović S, Kalina M et al (2007) Effect of zoledronic acid on the doxycycline-induced decrease in tumour burden in a bone metastasis model of human breast cancer. Brit J Cancer 96(10):1526–1531

    Article  PubMed  CAS  Google Scholar 

  • Fabbri F, Brigliadori G, Carloni S et al (2008) Zoledronic acid increases docetaxel cytotoxicity through pMEK and Mcl-1 inhibition in a hormone-sensitive prostate carcinoma cell line. J Transl Med 6:43

    Article  PubMed  Google Scholar 

  • Facchini G, Caraglia M, Morabito A et al (2010) Metronomic administration of Zoledronic acid and taxotere combination in castration resistant prostate cancer patients: Phase I ZANTE trial. Cancer Biol Ther 10(6):543–548

    Article  PubMed  CAS  Google Scholar 

  • Fournier P, Boissier S, Filleur S et al (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62:6538–6544

    PubMed  CAS  Google Scholar 

  • Fournier PG, Stresing V, Ebetino FH et al (2010) How do bispshosphonates inhibit bone metastasis in vivo? Neoplasia 12(7):571–578

    PubMed  CAS  Google Scholar 

  • Giraudo E, Inoue M, Hanahan D (2004) An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 114:623–633

    PubMed  CAS  Google Scholar 

  • Goffinet M, Thoulouzan M, Pradines A et al (2006) Zoledronic acid treatment impairs protein geranyl-geranylation for biological effects in prostatic cells. BMC Cancer 6:60

    Article  PubMed  CAS  Google Scholar 

  • Grant DS, Williams TL, Zahaczewsky M et al (2003) Comparison of antiangiogenic activities using paclitaxel (taxol) and docetaxel (taxotere). Int J Cancer 104:121–129

    Article  PubMed  CAS  Google Scholar 

  • Heath VL, Bicknell R (2009) Anticancer strategies involving the vasculature. Nat Rev Clin Oncol 6(7):395–404

    Article  PubMed  CAS  Google Scholar 

  • Hiraga T, Williams PJ, Ueda A et al (2004) Zoledronic acid inhibits visceral metastases in the 4T1/luc mouse breast cancer model. Clin Cancer Res 10:4559–4567

    Article  PubMed  CAS  Google Scholar 

  • Holen I, Coleman RE (2010) Anti-tumour activity of bisphosphonates in preclinical models of breast cancer. Breast Cancer Res 12:214

    Article  PubMed  CAS  Google Scholar 

  • Horie N, Murata H, Kimura S et al (2007) Combined effects of a third-generation bisphosphonate, zoledronic acid with other anticancer agents against murine osteosarcoma. Br J Cancer 96:255–261

    Article  PubMed  CAS  Google Scholar 

  • Hotchkiss KA, Ashton AW, Mahmood R et al (2002) Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol Cancer Ther 1:1191–1200

    PubMed  CAS  Google Scholar 

  • Jagdev SP, Coleman RE, Shipman CM et al (2001) The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence for synergy with paclitaxel. Br J Cancer 84(8):1126–1134

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Uehara H, Yazici S et al (2005) Modulation of bone microenvironment with zoledronate enhances the therapeutic effects of STI571 and paclitaxel against experimental bone metastasis of human prostate cancer. Cancer Res 65(9):3707–3715

    Article  PubMed  CAS  Google Scholar 

  • Kohno N (2008) Treatment of breast cancer with bone metastasis: bisphosphonate treatment - current and future. Int J Clin Oncol 13(1):18–23

    Article  PubMed  CAS  Google Scholar 

  • Koshimune R, Aoe M, Toyooka M et al (2007) Anti-tumor effect of bisphosphonate (YM529) on non-small cell lung cancer cell lines. BMC Cancer 7:8

    Article  PubMed  Google Scholar 

  • Kuroda J, Kimura S, Segawa H et al (2004) p53-independent anti-tumor effects of the nitrogen-containing bisphosphonate zoledronic acid. Cancer Sci 95:186–192

    Article  PubMed  CAS  Google Scholar 

  • Kubista B, Trieb K, Sevelda F et al (2006) Anticancer effects of zoledronic acid against human osteosarcoma cells. J Orthop Res 24(6):1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Lee MV, Fong EM, Singer FR et al (2001) Bisphosphonate treatment inhibits the growth of prostate cancer cells. Cancer Res 61:2602–2608

    PubMed  CAS  Google Scholar 

  • Li Y–Y, Chang JW, Chou WC et al (2008) Zoledronic acid is unable to induce apoptosis, but slows tumor growth and prolongs survival for non-small-cell lung cancers. Lung Cancer 59(2):180–191

    Article  PubMed  Google Scholar 

  • Luckman SP, Hughes DE, Coxon FP et al (1998) Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras. J Bone Miner Res 13(4):581–589

    Article  PubMed  CAS  Google Scholar 

  • Märten A, Lilienfeld-Toal M, Büchler MW et al (2007) Zoledronic acid has direct antiproliferative and antimetastatic effect on pancreatic carcinoma cells and acts as an antigen for delta2 gamma/delta T cells. J Immunother 30(4):370–377

    Article  PubMed  Google Scholar 

  • Matsumoto S, Kimura S, Segawa H et al (2005) Efficacy of the third-generation bisphosphonate, zoledronic acid alone and combined with anti-cancer agents against small cell lung cancer cell lines. Lung Cancer 47(1):31–39

    Article  PubMed  Google Scholar 

  • Mbeunkui F, Johann DJ Jr (2009) Cancer and the tumour microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol 63(4):571–582

    Article  PubMed  Google Scholar 

  • Michailidou M, Brown HK, Lefley DV et al (2010) Microvascular endothelial cell responses in vitro and in vivo: modulation by zoledronic acid and paclitaxel? J Vasc Res 47:481–493

    Article  PubMed  CAS  Google Scholar 

  • Michigami T, Hiraga T, Williams PJ et al (2002) The effect of the bisphosphonate ibandronate on breast cancer metastasis to visceral organs. Breast Cancer Res Treat 75:249–258

    Article  PubMed  CAS  Google Scholar 

  • Neville-Webbe HL, Holen I, Coleman RE (2002) The anti-tumour activity of bisphosphonates. Cancer Treat Rev 28:305–319

    Article  PubMed  CAS  Google Scholar 

  • Neville-Webbe HL, Rostami-Hodjegan A, Evans CA et al (2005) Sequence- and schedule-dependent enhancement of zoledronic acid induced apoptosis by doxorubicin in breast and prostate cancer cells. Int J Cancer 113:364–371

    Article  PubMed  CAS  Google Scholar 

  • Neville-Webbe HL, Evans CA, Coleman RE et al (2006) Mechanisms of the synergistic interaction between the bisphosphonate zoledronic acid and the chemotherapy agent paclitaxel in breast cancer cells in vitro. Tumour Biol 27:92–103

    Article  PubMed  CAS  Google Scholar 

  • Ottewell PD, Deux B, Mönkkönen H et al (2008a) Differential effect of doxorubicin and zoledronic acid on intraosseous versus extraosseus breast tumour growth in vivo. Clin Cancer Res 14:4658–4666

    Article  PubMed  CAS  Google Scholar 

  • Ottewell PD, Mönkkönen H, Jones M et al (2008b) Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst 100(16):1167–1178

    Article  PubMed  CAS  Google Scholar 

  • Ottewell PD, Woodward JK, Lefley DV et al (2009) Anticancer mechanisms of doxorubicin and zoledronic acid in breast cancer tumor growth in bone. Mol Cancer Ther 8(10):2821–2832

    Article  PubMed  CAS  Google Scholar 

  • Ottewell PD, Lefley DV, Cross SS et al (2010) Sustained inhibition of tumor growth and prolonged survival following sequential administration of doxorubicin and zoledronic acid in a breast cancer model. Int J Cancer 126(2):522–532

    Article  PubMed  CAS  Google Scholar 

  • Ory B, Blanchard F, Battaglia S et al (2007) Zoledronic acid activates the DNA S-phase checkpoint and induces osteosarcoma cell death characterized by apoptosis-inducing factor and endonuclease-G translocation independently of p53 and retinoblastoma status. Mol Pharmacol 71(1):333–343

    Article  PubMed  CAS  Google Scholar 

  • Pasquier E, Carre M, Pourroy B et al (2004) Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but not completion of a mitochondrial apoptotic signaling pathway. Mol Cancer Ther 3:1301–1310

    PubMed  CAS  Google Scholar 

  • Pasquier E, Honore S, Pourroy B et al (2005) Antiangiogenic concentrations of paclitaxel induce an increase in microtubule dynamics in endothelial cells but not in cancer cells. Cancer Res 65:2433–2440

    Article  PubMed  CAS  Google Scholar 

  • Riebeling C, Forsea A-M, Raisova M et al (2002) The bisphosphonate pamidronate induces apoptosis in human melanoma cells in vitro. Br J Cancer 87:366–371

    Article  PubMed  CAS  Google Scholar 

  • Rogers MJ et al (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9(32):2643–2658

    Article  PubMed  CAS  Google Scholar 

  • Rogers MJ, Brown RJ, Hodkin V et al (1996) Bisphosphonates are incorporated into adenine nucleotides by human aminoacyl-tRNA synthetase enzymes. Biochem Biophys Res Commun 224(3):863–869

    Article  PubMed  CAS  Google Scholar 

  • Rogers MJ, Gordon S, Benford HL et al (2000) Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88(suppl 12):2961–2978

    Article  PubMed  CAS  Google Scholar 

  • Russell RGG (2007) Bisphosphonates: mode of action and pharmacology. Pediatrics 119:S150–S162

    Article  PubMed  Google Scholar 

  • Santini D, Gentilucci UV, Vincenzi B et al (2003) The antineoplastic role of bisphosphonates: from basic research to clinical evidence. Ann Oncol 14:1468–1476

    Article  PubMed  CAS  Google Scholar 

  • Senaratne SG, Colston KW (2002) Direct effects of bisphosphonates on breast cancer cells. Breast Cancer Res 4:18–23

    Article  PubMed  CAS  Google Scholar 

  • Shipman CM, Rogers MJ, Apperley JF et al (1997) Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity. Br J Haematol 98(3):665–672

    Article  PubMed  CAS  Google Scholar 

  • Tassone P, Tagliaferri P, Viscomi C et al (2003) Zoledronic acid induces antiproliferative and apoptotic effects in human pancreatic cancer cells in vitro. Br J Cancer 88:1971–1978

    Article  PubMed  CAS  Google Scholar 

  • Thudi NK, Martin CK, Nadella MV et al (2008) Zoledronic acid decreased osteolysis but not bone metastasis in a nude mouse model of canine prostate cancer with mixed bone lesions. Prostate 68(10):1116–1125

    Article  PubMed  CAS  Google Scholar 

  • Ullén A, Lennartsson L, Harmenberg U et al (2005) Additive/synergistic antitumoral effects on prostate cancer cells in vitro following treatment with a combination of docetaxel and zoledronic acid. Acta Oncol 44(6):644–650

    Article  PubMed  Google Scholar 

  • van Beek ER, Lowik CW, van Wijngaarden J et al (2009) Synergistic effect of bisphosphonate and docetaxel on the growth of bone metastasis in an animal model of established metastatic bone disease. Breast Cancer Res Treat 118(2):307–313

    Article  PubMed  Google Scholar 

  • van der Pluijm G, Que I, Sijmons B et al (2005) Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 65(17):7682–7690

    PubMed  Google Scholar 

  • Virtanen SS, Väänänen HK, Härkönen PL et al (2002) Alendronate inhibits invasion of PC-3 prostate cancer cells by affecting the mevalonate pathway. Cancer Res 62:2708–2714

    PubMed  CAS  Google Scholar 

  • Wakchoure S, Merrell MA, Aldrich W et al (2006) Bisphosphonates inhibit the growth of mesothelioma cells in vitro and in vivo. Clin Cancer Res 12:2862–2868

    Article  PubMed  CAS  Google Scholar 

  • Walkington L, Coleman RE (2011) Advances in management of bone disease in breast cancer. Bone 48(1):80–87

    Article  PubMed  CAS  Google Scholar 

  • Walter C, Klein MO, Pabst A et al (2010) Influence of bisphosphonates on endothelial cells, fibroblasts, and osteogenic cells. Clin Oral Investig 14(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Winter MC, Syddal SP, Cross SS et al. (2010) ANZAC: A randomised neoadjuvant biomarker study investigating the anti-tumour activity of the AdditioN of Zoledronic Acid to Chemotherapy in breast cancer. Abstract Presented at the 33rd Annual San Antonio Breast Cancer Symposium Dec 8–12, San Antonio, TX, USA

    Google Scholar 

  • Wood J, Bonjean K, Ruetz S et al (2002) Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 302:1055–1061

    Article  PubMed  CAS  Google Scholar 

  • Yamada J, Tsuno NH, Kitayama J et al (2009) Anti-angiogenic property of zoledronic acid by inhibition of endothelial progenitor cell differentiation. J Surg Res 151(1):115–120

    Article  PubMed  CAS  Google Scholar 

  • Yano S, Zhang H, Hanibuchi M et al (2003) Combined therapy with a new bisphosphonate, minodronate (YM529), and chemotherapy for multiple organ metastases of small cell lung cancer cells in severe combined immunodeficient mice. Clin Cancer Res 9(14):5380–5385

    PubMed  CAS  Google Scholar 

  • Yoneda T, Michigami T, Yi B et al (2000) Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer 88:2979–2988

    Article  PubMed  CAS  Google Scholar 

  • Ziebart T, Pabst A, Klein MO et al. (2009) Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clin Oral Investig 15(1):105–111

    Article  PubMed  Google Scholar 

  • Zimering MB (2002) Effect of intravenous bisphosphonates on release of basic fibroblast growth factor in serum of patients with cancer-associated hypercalcemia. Life Sci 70(16):1947–1960

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingunn Holen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michailidou, M., Holen, I. (2012). Combinations of Bisphosphonates and Classical Anticancer Drugs: A Preclinical Perspective. In: Joerger, M., Gnant, M. (eds) Prevention of Bone Metastases. Recent Results in Cancer Research, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21892-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21892-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21891-0

  • Online ISBN: 978-3-642-21892-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics