Skip to main content

Role of Bacteria in Mating Preference in Drosophila melanogaster

  • Chapter
  • First Online:
Beneficial Microorganisms in Multicellular Life Forms

Abstract

Assortative mating, considered to be an early event in speciation, has been studied for decades in the context of divergent adaptation. In Drosophila it is commonly attributed to genetic elements in the flies that exhibit assortative mating. However, some cases have been reported where the genetic basis for these differences was unclear. In light of the Hologenome Theory of Evolution (Zilber-Rosenberg and Rosenberg, 2008), we considered the microbiota of Drosophila as an additional element, acting together with its host to better adapt to a changing environment. The microbiota of any organism is closely linked to its host. Many of the impacts of the microbiota on its host are known. New evidence shows an interesting, previously unknown, role of the microbiota in influencing its host’s behavior. In one case, as a result of adaptation to a new substrate, the microbiota changed with behavioral implications on its host flies. By changing its host’s mating preference, the microbiota has the potential of driving the evolution of its host. In this chapter, the mating process in Drosophila will be reviewed within the framework of the hologenome theory of evolution. Some conclusions and speculations on how microbes and their Drosophila host interact will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt S, Ringo J, Talyn B, Bray W, Dowse H (1998) The period gene controls courtship song cycles in Drosophila melanogaster. Anim Behav 56:87–97

    Article  PubMed  Google Scholar 

  • Andersson M, Simmons LW (2006) Sexual selection and mate choice. Trends Ecol Evol 21(6):296–302

    Article  PubMed  Google Scholar 

  • Aronson AI, Beckman W, Dunn P (1986) Bacillus-thuringiensis and related insect pathogens. Microbiol Rev 50(1):1–24

    PubMed  CAS  Google Scholar 

  • Behar A, Jurkevitch E, Yuval B (2008) Bringing back the fruit into fruit fly-bacteria interactions. Mol Ecol 17(5):1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Ben Ami E, Yuval B, Jurkevitch E (2010) Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. Isme J 4(1):28–37

    Article  PubMed  Google Scholar 

  • Billeter JC, Atallah J, Krupp JJ, Millar JG, Levine JD (2009) Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 461(7266):987–U250

    Article  PubMed  CAS  Google Scholar 

  • Blatch SA, Meyer KW, Harrison JF (2010) Effects of dietary folic acid level and symbiotic folate production on fitness and development in the fruit fly Drosophila melanogaster. Fly 4(4):312–319

    Article  PubMed  CAS  Google Scholar 

  • Boake CRB (2005) Sexual selection and speciation in Hawaiian Drosophila. Behav Genet 35(3):297–303

    Article  PubMed  Google Scholar 

  • Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244(5418):577–580

    Article  PubMed  CAS  Google Scholar 

  • Brummel T, Ching A, Seroude L, Simon AF, Benzer S (2004) Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci USA 101(35):12974–12979

    Article  PubMed  CAS  Google Scholar 

  • Butterworth FM (1969) Lipids of Drosophila – a newly detected lipid in male. Science 163(3873):1356–1357

    Article  PubMed  CAS  Google Scholar 

  • Byrne PG, Rice WR (2006) Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster. Proc R Soc B Biol Sci 273(1589):917–922

    Article  Google Scholar 

  • Capy P, Veuille M, Paillette M, Jallon JM, Vouidibio J, David JR (2000) Sexual isolation of genetically differentiated sympatric populations of Drosophila melanogaster in Brazzaville, Congo: the first step towards speciation? Heredity 84(4):468–475

    Article  PubMed  Google Scholar 

  • Carson HL, Templeton AR (1984) Genetic revolutions in relation to speciation phenomena – the founding of new populations. Annu Rev Ecol Syst 15:97–131

    Article  Google Scholar 

  • Corby-Harris V, Pontaroli AC, Shimkets LJ, Bennetzen JL, Habel KE, Promislow DEL (2007) Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl Environ Microbiol 73(11):3470–3479

    Article  PubMed  CAS  Google Scholar 

  • Cox CR, Gilmore MS (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75(4):1565–1576

    Article  PubMed  CAS  Google Scholar 

  • Dallerac R, Labeur C, Jallon JM, Knippie DC, Roelofs WL, Wicker-Thomas C (2000) A Delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc Natl Acad Sci USA 97(17):9449–9454

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. J. Murray, London

    Google Scholar 

  • De Oliveira AK, Cordeiro AR (1980) Adaptation of Drosophila-willistoni experimental populations to extreme Ph medium.2. Development of incipient reproductive isolation. Heredity 44(Feb):123–130

    Article  Google Scholar 

  • Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Bouletreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98(11):6247–6252

    Article  PubMed  CAS  Google Scholar 

  • Dickson BJ (2008) Wired for sex: the neurobiology of drosophila mating decisions. Science 322(5903):904–909

    Article  PubMed  CAS  Google Scholar 

  • Dobzhansky TG (1937) Genetics and the origin of species, vol 11, Columbia biological series. Columbia University Press, New York

    Google Scholar 

  • Dodd DMB (1989) Reproductive isolation as a consequence of adaptive divergence in Drosophila-pseudoobscura. Evolution 43(6):1308–1311

    Article  Google Scholar 

  • Dyer KA, Jaenike J (2004) Evolutionarily stable infection by a male-killing endosymbiont in Drosophila innubila: molecular evidence from the host and parasite genomes. Genetics 168(3):1443–1455

    Article  PubMed  CAS  Google Scholar 

  • Ferveur JF (2005) Cuticular hydrocarbons: their evolution and roles in Drosophila pheromonal communication. Behav Genet 35(3):279–295

    Article  PubMed  Google Scholar 

  • Friberg U, Arnqvist G (2003) Fitness effects of female mate choice: preferred males are detrimental for Drosophila melanogaster females. J Evol Biol 16(5):797–811

    Article  PubMed  CAS  Google Scholar 

  • Futuyma DJ (1979) Evolutionary biology, 1st edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Gavriel S, Jurkevitch E, Gazit Y, Yuval, B (2011) Bacterially enriched diet improves sexual performance of sterile male Mediterranean fruit flies. Journal of Applied Entomology, 135: no. doi: 10.1111/j.1439-0418.2010.01605.x

  • Hall JC (1994) The mating of a Fly. Science 264(5166):1702–1714

    Article  PubMed  CAS  Google Scholar 

  • Haselkorn TS, Markow TA, Moran NA (2009) Multiple introductions of the Spiroplasma bacterial endosymbiont into Drosophila. Mol Ecol 18(6):1294–1305

    Article  PubMed  CAS  Google Scholar 

  • Hollocher H, Ting CT, Pollack F, Wu CI (1997) Incipient speciation by sexual isolation in Drosophila melanogaster: variation in mating preference and correlation between sexes. Evolution 51(4):1175–1181

    Article  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50(1):371–393. doi:10.1146/annurev.ento.50.071803.130359

    Article  PubMed  CAS  Google Scholar 

  • Iliadi K, Iliadi N, Rashkovetsky E, Minkov I, Nevo E, Korol A (2001) Sexual and reproductive behaviour of Drosophila melanogaster from a microclimatically interslope differentiated population of ‘Evolution Canyon’ (Mount Carmel, Israel). Proc R Soc Lond Ser B Biol Sci 268(1483):2365–2374

    Article  CAS  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329(5988):212–215

    Article  PubMed  CAS  Google Scholar 

  • Kilias G, Alahiotis SN, Pelecanos M (1980) A multifactorial genetic investigation of speciation theory using Drosophila-melanogaster. Evolution 34(4):730–737

    Article  Google Scholar 

  • Korol A, Rashkovetsky E, Iliadi K, Michalak P, Ronin Y, Nevo E (2000) Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at “Evolution Canyon”. Proc Natl Acad Sci USA 97(23):12637–12642

    Article  PubMed  Google Scholar 

  • Koukou K, Pavlikaki H, Kilias G, Werren JH, Bourtzis K, Alahiotisi SN (2006) Influence of antibiotic treatment and Wolbachia curing on sexual isolation among Drosophila melanogaster cage populations. Evolution 60(1):87–96

    PubMed  Google Scholar 

  • Levins R (1968) Evolution in changing environments; some theoretical explorations, vol 2, Monographs in population biology. Princeton University Press, Princeton

    Google Scholar 

  • Liimatainen J, Hoikkala A, Aspi J, Welbergen P (1992) Courtship in Drosophila-montana – the effects of male auditory signals on the behavior of flies. Anim Behav 43(1):35–48

    Article  Google Scholar 

  • Mateos M, Castrezana SJ, Nankivell BJ, Estes AM, Markow TA, Moran NA (2006) Heritable endosymbionts of Drosophila. Genetics 174(1):363–376

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist, Columbia biological series. No. XIII. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1982) The growth of biological thought: diversity, evolution, and inheritance. Belknap Press, Cambridge

    Google Scholar 

  • Michalak P, Minkov I, Helin A, Lerman DN, Bettencourt BR, Feder ME, Korol AB, Nevo E (2001) Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in “Evolution Canyon,” Israel. Proc Natl Acad Sci USA 98(23):13195–13200

    Article  PubMed  CAS  Google Scholar 

  • Montenegro H, Solferini VN, Klaczko LB, Hurst GDD (2005) Male-killing Spiroplasma naturally infecting Drosophila melanogaster. Insect Mol Biol 14(3):281–287

    Article  PubMed  CAS  Google Scholar 

  • Muller JJ (1942) Isolating mechanisms, evolution and temperature. Biol Symp 6:71–125

    Google Scholar 

  • Rice WR, Hostert EE (1993) Laboratory experiments on speciation – what have we learned in 40 years. Evolution 47(6):1637–1653

    Article  Google Scholar 

  • Richard FJ, Aubert A, Grozinger CM (2008) Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 6:50

    Article  PubMed  Google Scholar 

  • Ritchie MG (2007) Sexual selection and speciation. Annu Rev Ecol Evol Syst 38(1):79–102

    Article  Google Scholar 

  • Ritchie MG, Halsey EJ, Gleason JM (1999) Drosophila song as a species-specific mating signal and the behavioural importance of Kyriacou & Hall cycles in D-melanogaster song. Anim Behav 58:649–657

    Article  PubMed  Google Scholar 

  • Rouault JD, Marican C, Wicker-Thomas C, Jallon JM (2004) Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; a model for HC evolution in D-melanogaster and D-simulans. Genetica 120(1–3):195–212

    Article  PubMed  Google Scholar 

  • Rova E, Björklund M (2011) Can preference for oviposition sites initiate reproductive isolation in Callosobruchus maculates. Plos One 6(1):e14628

    Article  PubMed  CAS  Google Scholar 

  • Rybak F, Sureau G, Aubin T (2002) Functional coupling of acoustic and chemical signals in the courtship behaviour of the male Drosophila melanogaster. Proc R Soc Lond Ser B Biol Sci 269(1492):695–701

    Article  CAS  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107(46):20051–20056

    Article  PubMed  CAS  Google Scholar 

  • Tauber E, Eberl DF (2003) Acoustic communication in Drosophila. Behav Process 64(2):197–210

    Article  Google Scholar 

  • Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6(10):741–751

    Article  PubMed  CAS  Google Scholar 

  • Williamson DL, Whitcomb RF, Tully JG, Gasparich GE, Rose DL, Carle P, Bove JM, Hackett KJ, Adams JR, Henegar RB, Konai M, Chastel C, French FE (1998) Revised group classification of the genus Spiroplasma. Int J Syst Bacteriol 48:1–12

    Article  PubMed  Google Scholar 

  • Wu CI et al (1995) Sexual isolation in Drosophila melanogaster: a possible case of incipient speciation. Proc Natl Acad Sci USA 92(7):2519–2523

    Article  PubMed  CAS  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Sharon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sharon, G., Segal, D., Rosenberg, E. (2012). Role of Bacteria in Mating Preference in Drosophila melanogaster . In: Rosenberg, E., Gophna, U. (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21680-0_4

Download citation

Publish with us

Policies and ethics