Skip to main content

Störungstheorie

  • Chapter
  • First Online:
Mathematische Physik: Klassische Mechanik

Part of the book series: Springer-Lehrbuch Masterclass ((MASTERCLASS))

  • 4972 Accesses

Zusammenfassung

In der Störungstheorie betrachtet man dynamische Systeme, deren Lösung zwar nicht explizit bekannt ist, die aber durch Vergleich mit der bekannten Lösung eines anderen dynamischen Systems auf dem gleichen Phasenraums kontrolliert werden kann. Im hamiltonschen Fall ist diese Näherung besonders präzis. Im Extremfall sehr irrationaler Frequenzverhältnisse ist sie für alle Zeiten gültig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. R. Abraham, J.E. Marsden: Foundations of Mechanics, second edition. Reading: Benjamin/Cummings, 1982. link

    Google Scholar 

  2. H. Broer, G. Huitema: A proof of the isoenergetic KAM-theorem from the ‘ordinary’ one. J. Differential Equations 90, 52–60 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Broer, M. Sevryuk: KAM Theory: quasi-periodicity in dynamical systems. In: Handbook of Dynamical Systems, Eds: B. Hasselblatt, A. Katok. North-Holland: 2007

    Google Scholar 

  4. R. Douady: Applications du théorème des tores invariants. Thèse de 3e cycle, Université Paris, Paris 1982

    Google Scholar 

  5. J. Féjoz: Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman). Ergodic Theory and Dynamical Systems 24, 1521–1582 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Féjoz: A simple proof of invariant tori theorems. Journal of Modern Dynamics 5 (2011)

    Google Scholar 

  7. J. Féjoz: A proof of the invariant torus theorem of Kolmogorov (2011)

    Google Scholar 

  8. S. Hildebrandt: Analysis 1 und 2. Berlin: Springer, 2002

    Google Scholar 

  9. A. Ya. Khinchin: Continued Fractions, Mineola: Dover, 1997

    Google Scholar 

  10. J. Laskar: Large Scale Chaos and Marginal Stability in the Solar System. Celestial Mechanics and Dynamical Astronomy64, 115–162 (1996) link

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. J. Laskar: Existence of collisional trajectories of Mercury, Mars and Venus with the Earth. Nature 459, 817–819 (2009). link

    Article  ADS  Google Scholar 

  12. R.S. MacKay, I.C. Percival: Converse KAM: theory and practice. Commun. Math. Phys. 98, 469–512 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. L. Markus, K.R. Meyer: Generic Hamiltonian dynamical systems are neither integrable nor ergodic. Memoirs of the AMS 144 (1974)

    Google Scholar 

  14. J. N. Mather: Existence of quasiperiodic orbits for twist homeomorphisms of the annulus. Topology 21, 457–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. MacKay, J. Meiss: Hamiltonian Dynamical Systems: A reprint selection. Taylor & Francis, 1987

    Google Scholar 

  16. J. Moser: Is the Solar System Stable? The Math. Intelligencer 1, 65–71 (1978). link

    Article  ADS  Google Scholar 

  17. J. Moser: Recent developments in the theory of Hamiltonian systems. SIAM review 28, 459–485 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Pöschel: Integrability of Hamiltonian Systems on Cantor Sets. Commun. Pure Appl. Math. 35, 635–695 (1982)

    Article  Google Scholar 

  19. K.F. Siburg: The Principle of Least Action in Geometry and Dynamics. Lecture Notes in Mathematics 844. Berlin: Springer, 2004

    MATH  Google Scholar 

  20. J. Sanders, F. Verhulst: Averaging methods in nonlinear dynamical systems. Berlin: Springer 1985

    MATH  Google Scholar 

  21. H. Weyl: Über die Gleichverteilung von Zahlen mod. eins. Mathematische Annalen 77, 313–352 (1916). link

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Knauf .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knauf, A. (2012). Störungstheorie. In: Mathematische Physik: Klassische Mechanik. Springer-Lehrbuch Masterclass. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20978-9_15

Download citation

Publish with us

Policies and ethics