Skip to main content

Tropical and Subtropical Peats: An Overview

  • Chapter
  • First Online:
Peatlands of the Western Guayana Highlands, Venezuela

Part of the book series: Ecological Studies ((ECOLSTUD,volume 217))

Abstract

Worldwide, peat and peatlands are given increasing attention as agricultural resource, source of energy, for their water regulation function, biodiversity reservoir, carbon pool, and as providers of other environmental services. However, knowledge on tropical peats, especially tropical highland and mountain peats, is still lagging behind as compared to the development of peat and peatland studies in temperate and boreal areas, although considerable progress has been made in mapping tropical peats, identifying their specific characteristics, assessing their use potentials, and calling attention to their vulnerability. This chapter provides an overview of the current knowledge on tropical and subtropical peats. After describing worldwide peat extent and distribution, the factors controlling peat formation and development, peat features and properties, and peat classification are analyzed. The chapter also addresses issues related with peat and peatlands as resources. Only 0.36 M km2 peatland, or 8.5% of the global 4.26 M km2, occur in the warm and moist regions of the world, especially in Southeast Asia. In tropical highlands, lower temperatures slow down the rate of biomass decomposition in contrast to what occurs in the warm to hot lowland areas. Peatlands are natural archives that register the palaeoenvironmental conditions associated with peat formation. However, the use of peat records for inferring Holocene climate changes in the tropics and subtropics is not yet well developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm J, Schulman L, Silvola J, Walden J, Nykänen H, Martikainen PJ (1999) Carbon balance of a boreal bog during a year with exceptionally dry summer. Ecology 80:161–174

    Article  Google Scholar 

  • Anderson JAR (1964) The structure and development of peat swamps of Sarawak and Brunei. J Trop Geogr 18:7–16

    Google Scholar 

  • Anderson JAR (1983) The tropical peat swamps of western Malaysia. In: Gore AJP (ed) Mires: swamp, bog, fen and moor, B-regional studies. Elsevier, Amsterdam, pp 181–199

    Google Scholar 

  • Anderson RL, Foster DR, Motzkin G (2003) Integrating lateral expansion into models of peatland development in temperate New England. J Ecol 91:68–76

    Article  Google Scholar 

  • Andriesse JP (1974) Tropical lowland peats in South-East Asia. Royal Tropical Institute, Department of Agricultural Research, Communication 63, Amsterdam

    Google Scholar 

  • Andriesse JP (1988) Nature and management of tropical peat soils. FAO Soils Bulletin 59, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Armentano TV, Menges ES (1986) Patterns of change in the carbon balance of organic soil wetlands of the temperate zone. J Ecol 74:755–774

    Article  CAS  Google Scholar 

  • Bord na Mona (1984) Fuel peat in developing countries. Study Report for the World Bank, Dublin

    Google Scholar 

  • Buol SW, Hole FD, McCracken RJ, Southard RJ (1997) Soil genesis and classification, 4th edn. Iowa State University Press, Ames

    Google Scholar 

  • Buringh P (1984) Organic carbon in soils of the world. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing. Wiley, New York, pp 91–109

    Google Scholar 

  • Charman DJ, Warner BG (2002) Peatlands and environmental change. Wiley, London

    Google Scholar 

  • Chimner RA, Ewel KC (2005) A tropical freshwater wetland. II: production, decomposition and peat formation. Wetland Ecol Manage 13:671–684

    Article  Google Scholar 

  • Chimner RA, Karberg JM (2008) Long-term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador. Mires and Peat 3: Art. 4. http://www.mires-and-peat.net/

  • ClimSoil (2008) Review of existing information on the interrelations between soil and climate change. Final Report. Alterra, Wageningen UR, The Netherlands

    Google Scholar 

  • Coulter JK (1957) Development of the peat soils in Malaya. Malays Agric J 40:188–199

    CAS  Google Scholar 

  • Dammon AWH, French TW (1987) The ecology of peat bogs of the glaciated northeastern United States. U.S. Fish and Wildlife Service, Biological Report 85 (7.16). Supt. of Documents, Washington DC

    Google Scholar 

  • Driessen PM (1977) Peat soils. In: Soils and rice. International Rice Research Institute, Philippines

    Google Scholar 

  • Driessen PM, Rochimah L (1976) The physical properties of lowland peats from Kalimantan and their significance for land suitability appraisal. In: Research on peat and podzolic soils in Indonesia and their potential for agriculture. Soil Research Institute, Bogor

    Google Scholar 

  • Dykes AP, Kirk KJ (2006) Slope instability and mass movements in peat deposits. In: Martini IP, Martinez-Cortizas A, Chesworth W (eds) Peatlands: evolution and records of environmental and climate changes, vol 9, Developments in earth surface processes. Elsevier, Amsterdam, pp 377–406

    Chapter  Google Scholar 

  • Dykes AP, Gunn J, Convery (née Kirk) KJ (2008) Lanslides in blanket peat at Cuilcagh Mountain, northwest Ireland. Geomorphology 102(3–4):325–340

    Article  Google Scholar 

  • EKONO (1981) Report on energy use of peat. Contribution to U.N. conference on new and renewable sources of energy. Nairobi

    Google Scholar 

  • FAO (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication. World Soil Resources Reports 103. FAO, ISRIC and IUSS, Rome

    Google Scholar 

  • Farnham RS, Finney HR (1965) Classification and properties of organic soils. Adv Agron 17:115–162

    Article  CAS  Google Scholar 

  • Farrell C, Feehan J (eds) (2008) Proceedings of the 13th international peat congress: “After wise use – the future of peatlands”. International Peat Society, Jyväskylä

    Google Scholar 

  • Gallart F, Clotet-Perarnau N, Bianciotto O, Puigdefàbregas J (1994) Peat soil flows in Bahía del Buen Suceso, Tierra del Fuego (Argentina). Geomorphology 9:235–241

    Article  Google Scholar 

  • Gaudig G, Couwenberg J, Joosten H (2006) Peat accumulation in kettle holes: bottom up or top down? Mires and Peat 1: Art. 6. http://www.mires-and-peat.net/

  • Gore AJP (1983) Introduction. In: Gore AJP (ed) Ecosystems of the world – 4A mires: swamp, bog, fen, moor. Elsevier, New York, pp 1–34

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Hairiah K, Sitompul SM, van Noordwijk M, Palm C (2001) Carbon stocks of tropical land use systems as part of the global C balance: effects of forest conversion and options for ‘clean development’ activities. International Centre for Research in Agroforestry (ICRAF), Southeast Asian Regional Research Programme. Bogor

    Google Scholar 

  • Hammond RF (1981) The peatlands of Ireland. Soil Survey Bulletin 35. An Foras Taluntais, Dublin

    Google Scholar 

  • Hardon HJ, Polak B (1941) De chemische samenstelling van enkele venen in Nederlandsch Indië. Landbouw 17:1081–1093

    Google Scholar 

  • Hashim R, Islam S (2008) A model study to determine engineering properties of peat soil and effect on strength after stabilization. Eur J Sci Res 22(2):205–215

    Google Scholar 

  • Holden J (2006) Peatland hydrology. In: Martini IP, Martinez-Cortizas A, Chesworth W (eds) Peatlands: evolution and records of environmental and climate changes, vol 9, Developments in earth surface processes. Elsevier, Amsterdam, pp 319–346

    Chapter  Google Scholar 

  • Hoscilo A, Page SE, Tansey K (2008) Repeated and extensive fire as the main driver of land cover change in Block C of the former Mega Rice Project. In: Farrell C, Feehan J (eds) Proceedings of the 13th international peat congress: “After wise use – the future of peatlands”, vol 1. International Peat Society, Jyväskylä, pp 206–208

    Google Scholar 

  • Immirzi CP, Maltby E, Clymo RS (1992) The global status of peatlands and their role in carbon cycling. Report 11, Friends of the Earth, London

    Google Scholar 

  • Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147(3–4):151–158

    Article  CAS  Google Scholar 

  • Jansen JC, Diemont WH, Koenders N (1985) Peat development for power generation in West Kalimantan – an ecological appraisal. The Netherlands Economic Institute, Rotterdam

    Google Scholar 

  • Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasanders H (2005) Carbon fluxes from a tropical peat swamp forest floor. Glob Change Biol 11(10):1788–1797

    Article  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands. International Mire Conservation Group and International Peat Society, Jyväskylä

    Google Scholar 

  • Jordan S, Velty S, Zeitz J (2007) The influence of degree of peat decomposition on phosphorus binding forms in fens. Mires and Peat 2: Art. 7. http://www.mires-and-peat.net/

  • Kivinen E (1980) Proposal for general classification of virgin peat. Proceedings of the 6th international peat congress, Duluth, pp 47–51

    Google Scholar 

  • Kurbatov IM (1968) The question of the genesis of peat and its humic acids. In: Robertson RA (ed) Transactions of the 2nd international peat congress, Leningrad, vol 1. HMSO, Edinburgh, pp 133–137

    Google Scholar 

  • Lappalainen E (ed) (1996) Global peat resources. International Peat Society, Jyväskylä

    Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5:1475–1491

    Article  CAS  Google Scholar 

  • Lucas RE (1982) Organic soils (Histosols). Formation, distribution, physical and chemical properties and management for crop production. Research Report 435 (Farm Science). Michigan State University, East Lansing, MI

    Google Scholar 

  • Ludang Y, Jaya A, Inoue T (2007) Geohydrological conditions of the developed peatland in Central Kalimantan. World Appl Sci J 2(3):198–203

    Google Scholar 

  • Maltby E, Immirzi P (1993) Carbon dynamics in peatlands and other wetland soils: regional and global perspectives. Chemosphere 27:999–1023

    Article  CAS  Google Scholar 

  • Maltby E, Proctor MCF (1996) Peatlands: their nature and role in the biosphere. In: Lappalainen E (ed) Global peat resources. International Peat Society, Jyväskylä, pp 11–19

    Google Scholar 

  • Martini IP, Martinez-Cortizas A, Chesworth W (eds) (2006a) Peatlands: evolution and records of environmental and climate changes, vol 9, Developments in earth surface processes. Elsevier, Amsterdam

    Google Scholar 

  • Martini IP, Martinez-Cortizas A, Chesworth W (2006b) Peatlands: a concise guide to the volume. In: Martini IP, Martinez-Cortizas A, Chesworth W (eds) Peatlands: evolution and records of environmental and climate changes, vol 9, Developments in earth surface processes. Elsevier, Amsterdam, pp 1–13

    Chapter  Google Scholar 

  • Matthews E, Fung I (1987) Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob Biogeochem Cycles 1:61–86

    Article  CAS  Google Scholar 

  • Medina E, Cuevas E, Huber O (2011) Origin of organic matter leading to peat formation in the southeastern Guayana uplands and highlands. In: Zinck JA, Huber O (eds) Peatlands of the Western Guayana Highlands, Venezuela, Chap. 8. Springer, Heidelberg, doi: 10.1007/978-3-642-20138-7_8

    Google Scholar 

  • Montanarella L, Jones RJA, Hiederer R (2006) The distribution of peatland in Europe. Mires and Peat 1: Art. 1. http://www.mires-and-peat.net/

  • Moore PD, Bellamy DJ (1974) Peatlands. Elek Science, London

    Book  Google Scholar 

  • Moore TR, Bubier JL, Bledzki L (2007) Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10:949–963

    Article  Google Scholar 

  • Neuzil SG (1997) Onset and rate of peat and carbon accumulation in four domed ombrogenous peat deposits, Indonesia. In: Rieley JO, Page SE (eds) Biodiversity and sustainability of tropical peatlands. Samara, Cardigan, pp 55–72

    Google Scholar 

  • Nogué S, Rull V, Montoya E, Huber O, Vegas-Vilarrúbia T (2009) Paleoecology of the Guayana Highlands (northern South America): Holocene pollen record from the Eruoda-tepui in the Chimantá massif. Palaeogeogr Palaeoclimatol Palaeoecol 281:165–173

    Article  Google Scholar 

  • Notohadiprawiro T (1997) Twenty-five years experience in peatland development for agriculture in Indonesia. In: Rieley JO, Page SE (eds) Biodiversity and sustainability of tropical peatlands. Samara, Cardigan, pp 301–310

    Google Scholar 

  • Page SE, Banks C (2007) Tropical peatlands: distribution, extent and carbon storage – uncertainties and knowledge gaps. Peatlands Int 2:26–27

    Google Scholar 

  • Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65

    Article  CAS  PubMed  Google Scholar 

  • Page SE, Wüst RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quatern Sci 19(7):625–635

    Article  Google Scholar 

  • Page SE, Rieley JO, Wüst R (2006) Lowland tropical peatlands of Southeast Asia. In: Martini IP, Martinez-Cortizas A, Chesworth W (eds) Peatlands: evolution and records of environmental and climate changes, vol 9, Developments in earth surface processes. Elsevier, Amsterdam, pp 145–172

    Chapter  Google Scholar 

  • Page SE, Banks CJ, Rieley JO (2007) Tropical peatlands: distribution, extent and carbon storage – uncertainties and knowledge gaps. http://www.geog.le.ac.uk/carbopeat/media/pdf/yogyapapers/p1.pdf

  • Payne RJ, Blackford JJ (2008) Peat humification and climate change: a multi-site comparison from mires in south-east Alaska. Mires and Peat 3: Art. 9. http://www.mires-and-peat.net/

  • Pfadenhauer J (1990) Tropische und subtropische Moore. In: Göttlich K (ed) Moor- und Torfkunde. 3. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart, pp 102–113

    Google Scholar 

  • Polak B (1950) Occurrence and fertility of tropical peat soils in Indonesia. In: Proceedings of the 4th international congress of soil science vol 2, pp 183–185

    Google Scholar 

  • Rajagopalan G, Sukumar R, Ramesh R, Pant RK, Rajagopalan G (1997) Late Quaternary vegetational and climatic changes from tropical peats in southern India – an extended record up to 40,000 years BP. Curr Sci 73(1):60–63

    Google Scholar 

  • Rajagopalan G, Ramesh R, Sukumar R (1999) Climatic implications of δ13C and δ18O ratios from C3 and C4 plants growing in a tropical montane habitat in southern India. J Biosci 24(4):491–498

    Article  Google Scholar 

  • Rieley JO, Page SE (2005) Wise use of tropical peatlands: focus on Southeast Asia. Alterra-Wageningen University and Research Centre and the EU INCO-Strapeat and Restorpeat Partnerships, Wageningen

    Google Scholar 

  • Rodríguez AR (1999) Conservación de humedales en Venezuela: inventario, diagnóstico ambiental y estrategia. Comité Venezolano de la UICN, Caracas

    Google Scholar 

  • Rull V (1991) Contribución a la paleoecología de Pantepui y la Gran Sabana (Guayana Venezolana): clima, biogeografía y ecología. Scientia Guaianae 2, CVG-EDELCA, Caracas

    Google Scholar 

  • Satrio AE, Gandaseca S, Ahmed OH, Ab Majid NM (2009) Effect of precipitation fluctuation on soil carbon storage of a tropical peat swamp forest. Am J Appl Sci 6(8):1484–1488

    Article  CAS  Google Scholar 

  • Schubert C, Fritz P (1985) Radiocarbon ages of peat, Guayana Highlands (Venezuela). Some paleoclimatic implications. Naturwissenschaften 72:427–429

    Article  CAS  Google Scholar 

  • Schubert C, Fritz P, Aravena R (1994) Late Quaternary paleoenvironmental studies in the Gran Sabana (Venezuelan Guayana Shield). Quatern Int 21:81–90

    Article  Google Scholar 

  • Shier CW (1985) Tropical peat resources – an overview. In: Proceedings symposium tropical peat resources: prospects and potential. International Peat Society, Kingston, pp 29–46

    Google Scholar 

  • Shimada S, Takahashi H, Haraguchi A, Kaneko M (2001) The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53(3):249–267

    Article  CAS  Google Scholar 

  • Sieffermann RG, Fournier M, Triutomo S, Sadelman MT, Semah AM (1988) Velocity of tropical forest peat accumulation in Central Kalimantan Province, Indonesia (Borneo). Proceedings of the 8th international peat congress, Leningrad, pp 90–98

    Google Scholar 

  • Sjörs H (1980) Peat on earth: multiple use or conservation? Ambio 9:303–308

    Google Scholar 

  • Stêpniewska Z, Borkowska A, Kotowska U (2006) Phosphorus release from peat soils under flooded conditions of the Leczynsko-Wlodawskie Lake District. Int Agrophysics 20:237–243

    Google Scholar 

  • Sukumar R, Ramesh R, Pant RK, Rajagopalan G (1993) A δ13C record of late Quaternary climate change from tropical peats in southern India. Nature 364(6439):703–706

    Article  CAS  Google Scholar 

  • Tie YL, Kueh HS (1979) A review of lowland organic soils of Sarawak. Department of Agriculture, Technical Paper 4, Research Branch, Sarawak

    Google Scholar 

  • Tie YL, Lim CP (1976) Lowland peat soils for sago-growing in Sarawak. In: Tan K (ed) Sago-76. Papers of the 1st international sago symposium, Kuching, pp 187–189

    Google Scholar 

  • USDA (1999) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. Agricultural Handbook 436, 2nd edn. US Department of Agriculture, Natural Resources Conservation Service, Soil Survey Staff. Washington, DC

    Google Scholar 

  • USDA (2006) Keys to Soil Taxonomy. US Department of Agriculture, Natural Resources Conservation Service, National Cooperative Soil Survey. Washington, DC

    Google Scholar 

  • Von Post L (1924) Das genetische System der organogenen Bildungen Schwedens. Mémoires sur la nomenclature et la classification des sols. International Committee of Soil Science, Helsinki, pp 287–304

    Google Scholar 

  • Wheeler R (2003) Forest ecosystems and bogs in arctic, temperate and tropical locations. http://www.uaf.edu/ces/forestry/pdfs/Ecosystems%20and%20Bogs.pdf

  • White WA, Warne AG, Guevara EH, Aslan A, Tremblay TA, Raney JA (2002) Geo-environments of the northwest Orinoco delta, Venezuela. Interciencia 27(10):521–528

    Google Scholar 

  • Wikipedia (2008) Peat. http://en.wikipedia.org/wiki/Peat

  • Wösten JHM, Clymans E, Page SE, Rieley JO, Limin SH (2008) Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena 73(2):212–224

    Article  Google Scholar 

  • Wüst RAJ, Bustin RM, Lavkulich LM (2003) New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena 53(2):133–163

    Article  Google Scholar 

  • Yule CM, Gomez LN (2009) Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetlands Ecol Manage 17:231–241

    Article  Google Scholar 

  • Zinck JA, García P, Van der Plicht J (2011) Tepui peatlands: age record and environmental changes. In: Zinck JA, Huber O (eds) Peatlands of the Western Guayana Highlands, Venezuela, Chap. 7. Springer, Heidelberg, doi: 10.1007/978-3-642-20138-7_7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Zinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zinck, J.A. (2011). Tropical and Subtropical Peats: An Overview. In: Zinck, J., Huber, O. (eds) Peatlands of the Western Guayana Highlands, Venezuela. Ecological Studies, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20138-7_2

Download citation

Publish with us

Policies and ethics