Skip to main content

Nanocarriers and Cancer Therapy: Approaches to Topical and Transdermal Delivery

  • Chapter
Nanocosmetics and Nanomedicines

Abstract

The main goals of nanotechnology in cancer are to develop safer and more effective diagnostics and therapeutics. Nanotechnology can bring advantages to drug delivery, overcoming the limitations of conventional formulations. Drugs encapsulated in targeted nanocarriers are promising for the improvement of efficacy and safety of not only currently available drugs, but also certain chemical or biological compounds that were not previously used due to toxic effects or because they were not able to be administered. Drug delivery across the skin is an extremely attractive route due to the possibility of targeting skin diseases (topical), for achieving systemic effects (transdermal administration), providing patient convenience, and avoiding first-pass hepatic metabolism. However, this route still remains a challenge due the highly organised stratum corneum structure. Several strategies have been studied to optimize topical and transdermal drug delivery, including physical techniques, such as eletroporation and iontophoresis, and nanotechnology-based drug delivery systems. This work discusses nanotechnology evolution and the use of several nanotechnology strategies to increase skin penetration and permeation in the improvement of cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park, K.: Nanotechnology: What it can do for drug delivery. J. Control Release 120, 1–3 (2007), doi:10.1016/j.jconrel.2007.05.003

    Article  CAS  Google Scholar 

  2. Koo, O.M., Rubinstein, M.D., Onyuksel, H.: Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine: NBM 1, 193–212 (2005)

    CAS  Google Scholar 

  3. Roco, M.C.: The US National Nanotechnology Initiative after 3 years (2000- 2003). J. Nanoparticle Res. 6, 1–10 (2004)

    Article  Google Scholar 

  4. Ghandehari, H.: Materials for advanced drug delivery in the 21st century: A focus area for advanced drug delivery reviews. Adv. Drug. Deliv. Rev. 60, 956 (2008), doi:10.1016/j.addr.2008.04.001

    Article  CAS  Google Scholar 

  5. Sahoo, S.K., Parveen, S., Panda, J.J.: The present and future of nanotechnology in human health care. Nanomedicine: NBM 3, 20–31 (2007), doi:10.1016/j.nano.2006.11.008

    CAS  Google Scholar 

  6. Petros, R.A., Simone, J.M.: Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010), doi:10.1038/nrd2591

    Article  CAS  Google Scholar 

  7. Zhang, L., Gu, F.X., Chan, J.M., Wang, A.Z., Langer, R.S., Farokhzad, O.C.: Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769 (2008), doi:10.1038/sj.clpt.6100400

    Article  CAS  Google Scholar 

  8. Islam, N., Miyazaki, K.: An empirical analysis of nanotechnology research domains. Technovation 30, 229–237 (2010), doi:10.1016/j.technovation.2009.10.002

    Article  Google Scholar 

  9. Roco, M.C., Bainbridge, W.S.: Converging technologies for improving human performance: integrating from the nanoscale. J. Nanopart. Res. 4, 281–295 (2002), doi:10.1023/A:1021152023349

    Article  Google Scholar 

  10. Jatzkewitz, H.: Incorporation of physiologically-active substances into a colloidal blood plasma substitute. I. Incorporation of mescaline peptide into polyvinylpyrrolidone. Hoppe-Seylers Z Physiol. Chem. 297, 149–156 (1954)

    Article  CAS  Google Scholar 

  11. Jatzkewitz, H.: An ein kolloidales blutplasmaersatzmittel (polyvinylpyrrolidon) gebundenes peptamin (glycyl-l-leucyl-mezcalin) als neuartige depotform fur biologisch aktive primare amine (mezcalin). Z Naturforsch. B 10, 27–31 (1955)

    Google Scholar 

  12. Bangham, A.D., Standish, M.M., Watkins, J.C.: Diffusion of univalent ions across lamellae of swollen phospholipids. J. Mol. Biol. 13, 238–252 (1965)

    Article  CAS  Google Scholar 

  13. Farokhzad, O.C., Langer, R.: Impact of Nanotechnology on Drug Delivery. ACSnano 3, 16–20 (2009), doi: 10.1021/nn900002m CCC:$40.75

    CAS  Google Scholar 

  14. El-Shabouri, M.H.: Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int. J. Pharm. 249, 101–108 (2002), doi:10.1016/S0378-5173(02)00461-1

    Article  CAS  Google Scholar 

  15. Hu, L., Tang, X., Cui, F.: Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J. Pharm. Pharmacol. 56, 1527–1535 (2004), doi:10.1211/0022357044959

    Article  CAS  Google Scholar 

  16. American Cancer Society (2010), http://www.cancer.org (accessed April 20, 2010)

  17. Brannon-Peppas, L., Blanchette, J.O.: Nanoparticles and targeted systems for cancer therapy. Adv. Drug Deliver. Rev. 56, 1649–1659 (2004), doi:10.1016/j.addr.2004.02.014

    Article  CAS  Google Scholar 

  18. Lee, Y.M., Kim, S.Y.: Nanoparticles in Cancer Drug Delivery Systems. In: Liu, X., Chu, P.K. (eds.) Biomaterials Fabrication and Processing Handbook. CRC Press, Boca Raton (2008)

    Google Scholar 

  19. Betancourt, T., Doiron, A., Brannon-Peppas, L.: Polymeric Nanoparticles for Tumour-Targeted Drug Delivery. In: Amiji, M.M. (ed.) Nanotechnology for Cancer Therapy. CRC Press, Boca Raton (2006)

    Google Scholar 

  20. Li, C., Wallace, S.: Polymer-drug conjugates: Recent development in clinical oncology. Adv. Drug Deliv. Rev. 60, 886–898 (2008), doi:10.1016/j.addr.2007.11.009

    Article  CAS  Google Scholar 

  21. Pillai, O., Dhanikula, A.B., Panchagnula, R.: Drug delivery: an odyssey of 100 years. Curr. Opin. Chem. Biol. 5, 439–446 (2001), doi:10.1016/S1367-5931(00)00226-X

    Article  CAS  Google Scholar 

  22. Oliveira, F.S., Ramos, T.M.B., Oliveira, S.S.M., Gaitani, C.M., Silva, R.S., Marchetti, J.M.: Development of biodegradable nanoparticles containing trans-[RuCl([15]ane)(NO)]2 +  as nitric oxide donor. Trends in Inorganic Chemistry 10, 27–34 (2008)

    CAS  Google Scholar 

  23. Smith, B., Uhl, K.: Drug Delivery in the Twenty-First Century: A New Paradigm. Clin. Pharmacol. Ther. 85, 451–455 (2009), doi:10.1038/clpt.2009.31

    Article  CAS  Google Scholar 

  24. Karathanasis, E., Chan, L., Balusu, S.R., D’Orsi, C.J., Annapragada, A.V., Sechopoulos, I., Bellamkonda, R.V.: Multifunctional nanocarriers for mammographic quantification of tumour dosing and prognosis of breast cancer therapy. Biomater 29, 4815–4822 (2008), doi:10.1016/j.biomaterials.2008.08.036

    Article  CAS  Google Scholar 

  25. Sinha, R., Kim, G.J., Nie, S., Shin, D.M.: Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol. Cancer. Ther. 5, 1909–1917 (2006), doi:10.1158/1535-7163.MCT-06-0141

    Article  CAS  Google Scholar 

  26. Tanaka, T., Decuzzi, P., Cristofanilli, M., Sakamoto, J.H., Tasciotti, E., Robertson, F.M., Ferrari, M.: Nanotechnology for breast cancer therapy. Biomed. Microdev. 11, 49–63 (2009), doi:10.1007/s10544-008-9209-0

    Article  CAS  Google Scholar 

  27. Yezhelyev, M.V., Gao, X., Xing, Y., Al-Hajj, A., Nie, S., O’Regan, R.M.: Emerging use of nanoparticles in diagnosis and treatment of breast cancer. The Lancet Oncology 7, 657–667 (2006), doi:10.1016/S1470-2045(06)70793-8

    Article  CAS  Google Scholar 

  28. Orive, G., Hernández, R.M., Gascón, A.R., Pedraz, J.L.: Micro and nano drug delivery systems in cancer therapy. Cancer. Ther. 3, 131–138 (2005)

    Google Scholar 

  29. Allouache, D., Gawande, S.R., Tubiana-Hulin, M., et al.: First line therapy with gemcitabine and paclitaxel in locally, recurrent or metastatic breast cancer: a phase II study. BMC Cancer 5, 151–159 (2005), doi:10.1186/1471-2407-5-151

    Article  Google Scholar 

  30. Li, C., Yu, D., Newman, R.A., Cabral, F.L., Stephens, C., Hunter, N., Milas, L., Wallace, S.: Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid) – paclitaxel conjugate. Cancer Res. 58, 2404–2409 (1998)

    CAS  Google Scholar 

  31. Bae, Y., Jang, W.D., Nishiyama, N., Fukushima, S., Kataoka, K.: Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol. Biosyst. 1, 242–250 (2005), doi:10.1039/B500266D

    Article  CAS  Google Scholar 

  32. Nasongkla, N., Bey, E., Ren, J., Ai, H., Khemtong, C., Guthi, J.S., Chin, S., Sherry, A.D., Boothman, D.A., Gao, J.: Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 6, 2427–2430 (2006), doi:10.1021/nl061412u

    Article  CAS  Google Scholar 

  33. Larina, I.V., Evers, B.M., Ashitkov, T.V., Bartels, C., Larin, K.V., Esenaliev, R.O.: Enhancement of drug delivery in tumors by using interaction of nanoparticles with ultrasound radiation. Technol. Cancer Res. Treat. 4, 217–226 (2005)

    Google Scholar 

  34. Vasir, J.K., Reddy, M.K., Labhasetwar, V.: Nanosystems in drug targeting: opportunities and challenges. Curr. Nanosci. 1, 47–64 (2005), doi:10.2174/1573413052953110

    Article  CAS  Google Scholar 

  35. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., Hori, K.: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control Release 65, 271–284 (2000), doi:10.1016/S0168-3659(99)00248-5

    Article  CAS  Google Scholar 

  36. Matsumura, Y., Maeda, H.: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)

    CAS  Google Scholar 

  37. Maeda, H., Greish, K., Fang, J.: The EPR effect and polymeric drugs: a paradigm shift for cancer chemotherapy in the 21st century. Adv. Polym. Sci. 193, 103–121 (2006), doi:10.1007/12_026

    Article  CAS  Google Scholar 

  38. Jain, P.K., El-Sayed, I.H., El-Sayed, M.A.: Au nanoparticles target cancer. Nano Today 2, 18–29 (2007), doi:10.1016/S1748-0132(07)70016-6

    Article  Google Scholar 

  39. Alexis, F., Rhee, J.W., Richie, J.P., Radovic-Moreno, A.F., Langer, R., Farokhzad, O.C.: New frontiers in nanotechnology for cancer treatment. Urol. Oncol. 26, 74–85 (2008), doi:10.1016/j.urolonc.2007.03.017

    CAS  Google Scholar 

  40. Farokhzad, O.C., Jon, S., Khademhosseini, A., et al.: Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004)

    Article  CAS  Google Scholar 

  41. Farokhzad, O.C., Cheng, J., Teply, B.A., et al.: Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA 103, 6315–6320 (2006)

    Article  CAS  Google Scholar 

  42. Cuenca, A.G., Jiang, H., Hochwald, S.N., Delano, M., Cance, W.G., Stephen, R., Grobmyer, S.R.: Emerging Implications of Nanotechnology on Cancer Diagnostics and Therapeutics. Cancer 107, 459–466 (2006), doi:10.1002/cncr.22035

    Article  CAS  Google Scholar 

  43. Hosmer, J., Reed, R.: Bentley MVLB, Nornoo A, Lopes LB Microemulsions Containing Medium-Chain Glycerides as Transdermal Delivery Systems for Hydrophilic and Hydrophobic Drugs. AAPS Pharm. Sci. Tech. 10, 589–596 (2009), doi:10.1208/s12249-009-9251-0

    Article  CAS  Google Scholar 

  44. Prausnitz, M., Mitragotri, S., Langer, R.: Current status and future potential of transdermal drug delivery. Nature Rev. 3, 115–124 (2004)

    Article  CAS  Google Scholar 

  45. Marquele-Oliveira, F., Santana, D.C.A., Taveira, S.F., Vermeulen, D.M., Oliveira, A.R.M., Silva, R.S., Lopez, R.F.V.: Development of nitrosyl ruthenium complex-loaded lipid carriers for topical administration: improvement in skin stability and in nitric oxide release by visible light irradiation. J. Pharm. Biomed. Anal. 53, 843–851 (2010), doi:10.1016/j.jpba.2010.06.007

    Article  CAS  Google Scholar 

  46. Schneider, M., Stracke, F., Hansen, S., Schaefer, U.F.: Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol. 1, 197–206 (2009)

    Article  CAS  Google Scholar 

  47. D’Aquino, R.: Good drug therapy: it’s not just the molecule it’s the delivery. CEP Magazine 100, 15S–17S (2004)

    Google Scholar 

  48. Hughees, G.A.: Nanostructure-mediated drug delivery. Nanomedicine: NBM 1, 22–30 (2005), doi:10.1016/j.nano.2004.11.009

    Google Scholar 

  49. Drummond, D.C., Meyer, O., Hong, K., Kirpotin, D.B., Papahadjopoulos, D.: Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 51, 691–743 (1999)

    CAS  Google Scholar 

  50. Lobenberg, R.: Smart Materials: Applications of nanotechnology in drug delivery and drug targeting. In: MEMS. NANO and Smart Systems. In: Proceedings of the International Conference on (ICMENS 2003). IEEE, Los Alamitos (2003)

    Google Scholar 

  51. Mishra, B., Patel, B.B., Tiwari, S.: Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: NBM 6, 9–24 (2010), doi:10.1016/j.nano.2009.04.008

    CAS  Google Scholar 

  52. Jain, P.K., El-Sayed, I.H., El-Sayed, M.A.: Au nanoparticles target cancer. Nano Today 2, 18–29 (2007), doi:10.1016/S1748-0132(07)70016-6

    Article  Google Scholar 

  53. Ghosh, P., Han, G., De, M., Kim, C.K., Rotello, V.M.: Gold nanoparticles in delivery applications. Adv. Drug Deliver. Rev. 60, 1307–1311 (2008), doi:10.1016/j.addr.2008.03.016

    Article  CAS  Google Scholar 

  54. Sibata, M.N., Tedesco, A.C., Marchetti, J.M.: Photophysicals and photochemicals studies of zinc(II) phthalocyanine in long time circulation micelles for Photodynamic Therapy use. Eur. J. Pharm. Sci. 23, 131–138 (2004), doi:10.1016/j.ejps.2004.06.004

    Article  CAS  Google Scholar 

  55. Primo, F.L., Rodrigues, M.M.A., Simoni, A.R., Bentley, M.V.L., Morais, P.C., Tedesco, A.C.: In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment. J. Magn. Magn. Mater. 320, e211–e214 (2008), doi:10.1016/j.jmmm.2008.02.050

    Article  Google Scholar 

  56. Shah, V.P.: Skin penetration enhancers: scientific perspective. In: Hsieh, D.S. (ed.) Drug Permeation and Enhancement. Marcel Dekker, New York (1994)

    Google Scholar 

  57. Asbill, C.S., Michniak, B.B.: Percutaneous penetration enhancers: local versus transdermal activity. Pharmaceut. Sci. Tech. Today 3, 36–41 (2000), doi:10.1016/S1461-5347(99)00225-4

    Article  CAS  Google Scholar 

  58. Fang, Y.P., Tsai, Y.H., Wu, P.C., Huanga, Y.B.: Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int. J. Pharm. 356, 144–152 (2008), doi:10.1016/j.ijpharm.2008.01.020

    Article  CAS  Google Scholar 

  59. Touitou, E., Alkabes, M., Davan, N., Eliaz, M.: Ethosomes: novel vesicular carriers for enhanced skin delivery. Pharmaceut. Res. 14, S305–S306 (1997)

    Google Scholar 

  60. Ting, W.W., Vest, C.D., Sontheimer, R.D.: Review of traditional and novel modalities that enhance the permeability of local therapeutics across the stratum corneum. Int. J. Dermatol. 43, 538–547 (2004), doi:10.1111/j.1365-4632.2004.02147.x

    Article  CAS  Google Scholar 

  61. Touitou, E., Godin, B., Weiss, C.: Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev. Res. 50, 406–415 (2000), doi: 10.1002/1098-2299(200007/08)

    Article  CAS  Google Scholar 

  62. Cornwell, P.A., Barry, B.W., Bouwstra, J.A., Gooris, G.S.: Modes of action of terpene penetration enhancers in human skin; differential scanning calorimetry, smallangle X-ray difraction and enhancer uptake studies. Int. J. Pharm. 127, 9–26 (1996)

    Article  CAS  Google Scholar 

  63. Cornwell, P.A., Barry, B.W., Stoddart, C.P., Bouwstra, J.A.: Wide-angle X-ray diffraction of human stratum corneum: effects of hydration and terpene enhancer treatment. J. Pharm. Pharmacol. 46, 938–950 (1994)

    CAS  Google Scholar 

  64. Dragicevic-Curica, N., Scheglmannb, D., Albrechtb, V., Fahra, A.: Development of different temoporfin-loaded invasomes - novel nanocarriers of temoporfin: Characterization, stability and in vitro skin penetration studies. Colloid Surface B 70, 198–206 (2009), doi:10.1016/j.colsurfb.2008.12.030

    Article  Google Scholar 

  65. Bhatia, K.S., Singh, L.: Effect of linolenic acid/ethanol or limonene/ethanol and iontophoresis on the in vitro percutaneous absorption of LHRH and ultrastructure of human epidermis. Int. J. Pharm. 180, 235–250 (1999), doi:10.1016/S0378-5173(99)00013-7

    Article  CAS  Google Scholar 

  66. Kobayashi, D., Matsuzawa, T., Sugibayashi, Y., Morimoto, Y., Kimura, M.: Analysis of the combined effect of 1-menthol and ethanol as skin penetration enhancers based on a two-layer skin model. Pharmaceut. Res. 11, 96–103 (1994)

    Article  CAS  Google Scholar 

  67. Pardeike, J., Hommoss, A., Rainer, H., Müler, R.H.: Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 336, 170–184 (2009)

    Article  Google Scholar 

  68. Singh, J., Gross, M., Sage, B., Davis, H.T., Maibach, H.I.: Regional variations in skin barrier function and cutaneous irritation due to iontophoresis in human subjects. Food Chem. Toxicol. 39, 1079–1086 (2001), doi:10.1016/S0278-6915(01)00057-6

    Article  CAS  Google Scholar 

  69. Lopez, R.F.V., Bentley, M.V.L.B., Delgado-Charro, M.B., Guy, R.H.: Iontophoretic delivery of 5-aminolevulinic acid (ALA): effect of pH. Pharmaceut. Res. 18, 311–315 (2001), doi:10.1023/A:1011050829531

    Article  CAS  Google Scholar 

  70. Lopez, R.F.V., Bentley, M.V.L.B., Delgado-Charro, M.B., Guy, R.H.: Optimization of aminolevulinic acid delivery by iontophoresis. J. Control Release 88, 65–70 (2003), doi:10.1016/S0168-3659(02)00456-X

    Article  CAS  Google Scholar 

  71. Green, P.G.: Iontophoretic delivery of peptide drugs. J. Control Release 41, 33–48 (1996), doi:10.1016/0168-3659(96)01354-5

    Article  CAS  Google Scholar 

  72. Subramony, J.A., Sharma, A., Phipps, J.B.: Microprocessor controlled transdermal drug delivery. Int. J. Pharm. 317, 1–6 (2006), doi:10.1016/j.ijpharm.2006.03.053

    Article  CAS  Google Scholar 

  73. Minkowitz, H.S.: Fentanyl iontophoretic transdermal system: A review. Tech. Reg. Anesth Pain Manag. 11, 3–8 (2007), doi:10.1053/j.trap.2007.02.001

    Article  Google Scholar 

  74. IonsysTM Full Prescribing Information. Otho-Mcneil, Inc., . Raritan, NJ

    Google Scholar 

  75. Sintov, A.C., Brandys-Sitton, R.: Facilitated skin penetration of lidocaine: combination of a short-term iontophoresis and microemulsion formulation. Int. J. Pharm. 316, 58–67 (2006), doi:10.1016/j.ijpharm.2006.02.034

    Article  CAS  Google Scholar 

  76. Liu, W., Hu, M., Liu, W., Xu, C., Xu, H., Yang, X.L.: Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int. J. Pharm. 364, 135–141 (2008)

    Article  CAS  Google Scholar 

  77. Mitragotri, S., Kost, J.: Low-frequency sonophoresis: A review. Adv. Drug Deliver. Rev. 56, 589–601 (2004), doi:10.1016/j.addr.2003.10.024

    Article  CAS  Google Scholar 

  78. Ueda, H., Mutoh, M., Seki, T., Kobayashi, D., Morimoto, Y.: Acoustic cavitation as an enhancing mechanism of low-frequency sonophoresis for transdermal drug delivery. Biol. Pharm. Bull. 32, 916–920 (2009), doi:10.1248/bpb.32.916

    Article  CAS  Google Scholar 

  79. Katz, N.P., Shapiro, D.E., Herrmann, T.E., Kost, J., Custer, L.M.: Rapid onset of cutaneous anesthesia with EMLA cream after pretreatment with a new ultrasound-emitting device. Anesth Analg. 98, 371–376 (2004), doi:10.1016/j.annemergmed.2004.05.015

    Article  CAS  Google Scholar 

  80. Frenkel, V., Li, K.C.: Potential role of pulsed-high intensity focused ultrasound in gene therapy. Future Oncol. 2, 111–119 (2006), doi:10.2217/14796694.2.1.111

    Article  CAS  Google Scholar 

  81. Tezel, A., Sens, A., Tuchscherer, J., Mitragotri, S.: Synergistic effect of low frequency ultrasound and surfactants on skin permeability. J. Pharm. Sci. 91, 91–100 (2002), doi:10.1002/jps.10000

    Article  CAS  Google Scholar 

  82. Nyborg, W.L.: Biological effects of ultrasound: development of safety guidelines. Part II: General review. Ultrasound Med. Biol. 27, 301–333 (2001), doi:10.1016/S0301-5629(00)00333-1

    Article  CAS  Google Scholar 

  83. Pitt, W.G., Husseini, G.A.: Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv. Drug Deliver. Rev. 60, 1137–1152 (2008), doi:10.1016/j.addr.2008.03.008

    Article  Google Scholar 

  84. Harada, Y., Ogawa, K., Irie, Y., Endo, H., Feril Jr., L.B., Uemura, T., Tachibana, K.: Ultrasound activation of TiO2 in melanoma tumors. J. Control Release (2010) (in press), doi:1016/j.jconrel.2010.10.012

    Google Scholar 

  85. Kinosita, K., Tsong, J.: Formation and resealing of pores of controlled sizes in human erythrocyte membrane. Nature 268, 438–441 (1977), doi:10.1038/268438a0

    Article  Google Scholar 

  86. Weaver, J.C., Chizmadzhe, Y.A.: Theory of electroporation: A review. Bioelectrochem. Bioenerg. 41, 135–160 (1996), doi:10.1016/S0302-4598(96)05062-3

    Article  CAS  Google Scholar 

  87. Buescher, E.S., Schoenbach, K.S.: Effects of submicrosecond, high intensity pulsed electric fields on living cells - intracellular electromanipulation. IEEE Trans. Dielect. Elect. Insul. 10, 788–794 (2003), doi:10.1109/TDEI.2003.1237328

    Article  Google Scholar 

  88. Gehl, J., Skovsgaar, T., Mir, L.M.: Enhancement of cytotoxicity by electropermeabilization: an improved method for screening drugs. Anti-cancer Drug 9, 319–325 (1998)

    Article  CAS  Google Scholar 

  89. Labanauskiene, J., Gehl, J., Didziapetriene, J.: Evaluation of cytotoxic effect of photodynamic therapy in combination with electroporation in vitro. Bioelectrochemistry 70, 78–82 (2007), doi:10.1016/j.bioelechem.2006.03.009

    Article  CAS  Google Scholar 

  90. Denet, A.R., Vanbever, R., Preát, V.: Skin electroporation for transdermal and topical delivery. Adv. Drug Deliver. Rev. 56, 659–674 (2004), doi:10.1016/j.addr.2003.10.027

    Article  CAS  Google Scholar 

  91. Giardino, R., Finia, M., Bonazzib, V., Cadossic, R., Nicolinid, A., Carpi, A.: Electrochemotherapy a novel approach to the treatment of metastatic nodules on the skin and subcutaneous tissues. Biomed Pharmacother 60, 458–462 (2006), doi:10.1016/j.biopha.2006.07.016

    Article  CAS  Google Scholar 

  92. Xu, J., Sun, Y., Huang, J., Chen, C., Liu, G., Jiang, Y., Zhao, Y., Jiang, Z.: Photokilling cancer cells using highly cell-specific antibody–TiO2 bioconjugates and electroporation. Bioelectrochemistry 71, 217–222 (2007)

    Article  CAS  Google Scholar 

  93. Haq, M.I., Smith, E., John, D.N., Kalaval, M., Edwards, C., Anstey, A., Morissey, A., Birchall, J.C.: Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices 11, 35–47 (2009), doi:10.1007/s10544-008-9208-1

    Article  CAS  Google Scholar 

  94. Henry, S., McAllister, D.V., Allen, M.G., Prausnitz, M.R.: Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 87, 922–925 (1998), doi:10.1021/js980042+

    Article  CAS  Google Scholar 

  95. Gill, H.S., Prausnitz, M.R.: Coated microneedles for transdermal delivery. J. Control Release 117, 227–237 (2007), doi:10.1016/j.jconrel.2006.10.017

    Article  CAS  Google Scholar 

  96. Donnelly, R.F., Morrowa, D.I.J., McCarron, P.A., et al.: Microneedle-mediated intradermal delivery of 5-aminolevulinic acid: Potential for enhanced topical photodynamic therapy. J. Control Release 129, 154–162 (2008), doi:10.1016/j.jconrel.2008.05.002

    Article  CAS  Google Scholar 

  97. Qiu, Y., Gao, Y., Hu, K., Li, F.: Enhancement of skin permeation of docetaxel: A novel approach combining microneedle and elastic liposomes. J. Control Release 129, 144–150 (2008), doi:10.1016/j.jconrel.2008.04.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marchetti, J.M., de Souza, M.C., Marotta-Oliveira, S.S. (2011). Nanocarriers and Cancer Therapy: Approaches to Topical and Transdermal Delivery. In: Beck, R., Guterres, S., Pohlmann, A. (eds) Nanocosmetics and Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19792-5_14

Download citation

Publish with us

Policies and ethics