Skip to main content

The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy in the 21st Century

  • Chapter
  • First Online:
Polymer Therapeutics II

Part of the book series: Advances in Polymer Science ((POLYMER,volume 193))

Abstract

Blood vessels in tumors are different to normal blood vessels because they have abnormal architectures and impaired functional regulation. We have studied these abnormalities, in particular vascular permeability in tumors, and found greatly enhanced permeability for macromolecules, which are retained in tumors for extended periods. We named this phenomenon the “enhanced permeability and retention(EPR) effect”. This effect, related to the transport of macromolecular drugs composed of liposomes, micelles, proteinaceous or polymer-conjugated macromolecules, lipid particles, and nanoparticles into the tumor, is the hallmark of solid tumor vasculature. These macromolecular species are therefore ideal for selective delivery to tumor. The EPR effect has facilitated the development of macromolecular drugs consisting of various polymer-drug conjugates (pendant type), polymeric micelles, and liposomes that exhibit far better therapeutic efficacy and far fewer side effects than the parent low-molecular-weight compounds.

Here, we discuss various aspects of the EPR effect via examples, including the use of polymeric drugs such as SMANCS [poly(styrene-co-maleic acid-half-n-butylate) (SMA)-conjugated neocarzinostatin (NCS)]. In addition, we review our new macromolecular drug candidates that generate reactive oxygen species via a novel mode of action. Because solid tumors frequently lack antioxystress enzymes, generating oxystress in tumor tissue may be another unique anticancer strategy. Most tumor cells have a weak or limited defense system against reactive oxygen species, and the oxygen radical-generating techniques that we have developed are primarily endogenous. Consequently, an approach to cancer therapy based on the EPR effect and oxyradical induction in order to produce apoptosis appears promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ACE:

Angiotensin-converting enzyme

AT II:

Angiotensin II

AUC:

Area under the concentration–time curve

BK:

Bradykinin

BSA:

Bovine serum albumin

COX:

Cyclooxygenase

CT:

Computed tomography

EPR effect:

Enhanced permeability and retention effect in solid tumor

HO-1:

Hemoxygenase-1

HPMA:

N-(2-Hydroxypropyl) methacrylamide copolymer

MDR:

Multidrug resistance

MMPs:

Matrix metalloproteinases

Mw:

Weight-average molecular weight

NCS:

Neocarzinostatin

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PEG-DAO:

PEG-Conjugated d-amino acid oxidase

PEG:

Poly(ethylene glycol), also called polyoxyethylene

PEG-ZnPP:

PEG-Conjugated zinc protoporphyrin IX

PG:

Prostaglandin

ROS:

Reactive oxygen species

SMA:

Poly(styrene-co-maleic acid/anhydride)

SMANCS:

Poly(styrene-co-maleic acid-half-n-butylate) conjugated with neocarzinostatin

Tax:

Paclitaxel, also known as Taxol

References

  1. WHO (2002) Press release WHO/52 – 28 June 2002. World Health Organization, Geneva

    Google Scholar 

  2. Allen TM (2002) Nat Rev Cancer 2:750

    Article  CAS  Google Scholar 

  3. Matsumura Y, Maeda H (1986) Cancer Res 46:6387

    CAS  Google Scholar 

  4. Iwai K, Maeda H, Konno T (1984) Cancer Res 44:2115

    CAS  Google Scholar 

  5. Maeda H, Matsumura Y (1989) Crit Rev Ther Drug Carrier Syst 6:193

    CAS  Google Scholar 

  6. Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H (1998) Jpn J Cancer Res 89:307

    CAS  Google Scholar 

  7. Maeda H, Sawa T, Konno T (2001) J Control Release 74:47

    Article  CAS  Google Scholar 

  8. Maeda H (2001) Adv Enzyme Regul 41:189

    Article  CAS  Google Scholar 

  9. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Int Immunopharmacol 3:319

    Article  CAS  Google Scholar 

  10. Greish K, Fang J, Inutsuka T, Nagamitsu A, Maeda H (2003) Clin Pharmacokinet 42:1089

    Article  CAS  Google Scholar 

  11. Maeda H, Matsumura Y, Kato H (1988) J Biol Chem 263:16051

    CAS  Google Scholar 

  12. Matsumura Y, Kimura M, Yamamoto T, Maeda H (1988) Jpn J Cancer Res 79:1327

    CAS  Google Scholar 

  13. Matsumura Y, Maruo K, Kimura M, Yamamoto T, Konno T, Maeda H (1991) Jpn J Cancer Res 82:732

    CAS  Google Scholar 

  14. Doi K, Akaike T, Horie H, Noguchi Y, Fujii S, Beppu T, Ogawa M, Maeda H (1996) Cancer 77:1598

    CAS  Google Scholar 

  15. Maeda H, Noguchi Y, Sato K, Akaike T (1994) Jpn J Cancer Res 85:331

    CAS  Google Scholar 

  16. Wu J, Akaike T, Maeda H (1998) Cancer Res 58:159

    CAS  Google Scholar 

  17. Maeda H, Wu J, Okamoto T, Maruo K, Akaike T (1999) Immunopharmacology 43:115

    Article  CAS  Google Scholar 

  18. Wu J, Akaike T, Hayashida K, Okamoto T, Okuyama A, Maeda H (2001) Jpn J Cancer Res 92:439

    CAS  Google Scholar 

  19. Wu J, Akaike T, Hayashida K, Nakagawa T, Miyakawa K, Muller-Esterl W, Maeda H (2002) Int J Cancer 98:29

    Article  CAS  Google Scholar 

  20. Li CJ, Miyamoto Y, Kojima Y, Maeda H (1993) Br J Cancer 67:975

    Article  CAS  Google Scholar 

  21. Suzuki M, Hori K, Abe Z, Saito S, Sato H (1981) J Natl Cancer Inst 67:663

    CAS  Google Scholar 

  22. Hori K, Saito S, Takahashi H, Sato H, Maeda H, Sato Y (2000) Jpn J Cancer Res 91:261

    CAS  Google Scholar 

  23. Tanaka S, Akaike T, Wu J, Fang J, Sawa T, Ogawa M, Beppu T, Maeda H (2003) J Drug Target 1:45

    Article  CAS  Google Scholar 

  24. Greish K, Sawa T, Fang J, Akaike T, Maeda H (2004) J Control Release 97:219

    Article  CAS  Google Scholar 

  25. Konno T, Maeda H, Iwai K, Tashiro S, Maki S, Morinaga T, Mochinaga M, Hiraoka T, Yokoyama I (1983) Eur J Cancer Clin Oncol 19:1053

    Article  CAS  Google Scholar 

  26. Konno T, Maeda H, Iwai K, Maki S, Tashiro S, Uchida M, Miyauchi Y (1984) Cancer 54:2367

    Article  CAS  Google Scholar 

  27. Maki S, Konno T, Maeda H (1985) Cancer 56:751

    Article  CAS  Google Scholar 

  28. Iwai K, Maeda H, Konno T, Matsumura Y, Yamashita R, Yamasaki K, Hirayama S, Miyauchi Y (1987) Anticancer Res 7:321

    CAS  Google Scholar 

  29. Konno T, Kai Y, Yamashita R, Nagamitsu A, Kimura M (1994) Acta Oncol 33:133

    Article  CAS  Google Scholar 

  30. Singer JW, Baker B, De P Vries, Kumar A, Shaffer S, Vawter E, Bolton M, Garzone P (2003) In: Maeda H, Kabanov A, Kataoka K, Okano T (eds) Polymer drugs in the clinical stage. Kluwer Academic/Plenum, New York, p 81

    Google Scholar 

  31. Singer JW, Bhatt R, Tulinsky J, Buhler KR, Heasley E, Klein P, de Vries P (2001) J Control Release 74:243

    Article  CAS  Google Scholar 

  32. Sawa T, Wu J, Akaike T, Maeda H (2000) Cancer Res 60:666

    CAS  Google Scholar 

  33. Fang J, Sawa T, Akaike T, Maeda H (2002) Cancer Res 62:3138

    CAS  Google Scholar 

  34. Sahoo SK, Sawa T, Fang J, Tanaka S, Miyamoto Y, Akaike T, Maeda H (2002) Bioconjug Chem 13:1031

    Article  CAS  Google Scholar 

  35. Fang J, Sawa T, Akaike T, Akuta T, Sahoo SK, Greish K, Hamada A, Maeda H (2003) Cancer Res 63:3567

    CAS  Google Scholar 

  36. Fang J, Sawa T, Akaike T, Greish K, Maeda H (2004) Int J Cancer 109:1

    Article  CAS  Google Scholar 

  37. Folkman J (1990) J Natl Cancer Inst 82:4

    Article  CAS  Google Scholar 

  38. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Cancer Res 55:3752

    CAS  Google Scholar 

  39. Skinner SA, Tutton PJ, O'Brien PE (1990) Cancer Res 50:2411

    CAS  Google Scholar 

  40. Suzuki M, Takahashi T, Sato T (1987) Cancer 59:444

    Article  CAS  Google Scholar 

  41. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Science 219:983

    Article  CAS  Google Scholar 

  42. Jain R (1994) Sci Am 271:58

    Article  CAS  Google Scholar 

  43. Duncan R, Sat YN (1998) Ann Oncol 9:149

    Google Scholar 

  44. Duncan R (1999) Pharm Sci Technol Today 2:441

    Article  CAS  Google Scholar 

  45. Seymour LW, Miyamoto Y, Maeda H, Brereton M, Strohalm J, Ulbrich K, Duncan R (1995) Eur J Cancer 31:766

    Article  Google Scholar 

  46. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Am J Pathol 156:1363

    Article  CAS  Google Scholar 

  47. Ohkouchi K, Imoto H, Takakura Y, Hashida M, Sezaki H (1990) Cancer Res 50:1640

    CAS  Google Scholar 

  48. Maeda H, Matsumoto T, Konno T (1984) J Protein Chem 3:181

    Article  CAS  Google Scholar 

  49. Plendl J, Snyman C, Naidoo S, Sawant S, Mahabeer R, Bhoola KD (2000) Biol Chem 11:1103

    Article  Google Scholar 

  50. Strausser HR, Humes JL (1975) Int J Cancer 15:724

    Article  CAS  Google Scholar 

  51. Trevisani A, Ferretti E, Capuzzo A, Tomasi V (1980) Br J Cancer 41:341

    Article  CAS  Google Scholar 

  52. Meyer RE, Shan S, Dan J, Dodge RK, Bonaventura J, Ong ET, Dewhirst MW (1995) Br J Cancer 71:1169

    Article  CAS  Google Scholar 

  53. Tozer GM, Prise VE, Chaplin DJ (1997) Cancer Res 57:948

    CAS  Google Scholar 

  54. Gallo O, Masini E, Morbidelli L, Franchi A, Fini-Storchi I, Vergari WA, Ziche M (1998) J Natl Cancer Inst 90:587

    Article  CAS  Google Scholar 

  55. Garcia-Cardena G, Folkman J (1998) J Natl Cancer Inst 90:560

    Article  CAS  Google Scholar 

  56. Jackson JR, Seed MP, Kirchen CH, Willoughby DA, Wannan JD (1997) FASEB J 11:457

    CAS  Google Scholar 

  57. Okamoto T, Akaike T, Nagano T, Miyajima S, Suga M, Ando M, Ichimori K, Maeda H (1997) Arch Biochem Biophys 342:26

    Article  Google Scholar 

  58. Maeda H, Aikawa S, Yamashita A (1975) Cancer Res 35:554

    CAS  Google Scholar 

  59. Oda T, Maeda H (1987) Cancer Res 47:3206

    CAS  Google Scholar 

  60. Duncan R, Gac-Breton S, Keane R, Musila R, Sat YN, Satchi R, Searle F (2001) J Control Release 74:135

    Article  CAS  Google Scholar 

  61. Pellegrin P, Fernandez A, Lamb NJ, Bennes R (2002) Mol Biol Cell 13:570

    Article  CAS  Google Scholar 

  62. Miyamoto Y, Oda T, Maeda H (1990) Cancer Res 50:1571

    CAS  Google Scholar 

  63. St'astny M, Strohalm J, Plocova D, Ulbrich K, Rihova B (1990) Eur J Cancer 35:459

    Article  Google Scholar 

  64. Minko T, Kopeckova P, Pozharov V, Kopecek J (1998) J Control Release 54:223

    Article  CAS  Google Scholar 

  65. Maeda H (1981) Anticancer Res 1:175

    CAS  Google Scholar 

  66. Maeda H (1997) In: Maeda H, Edo K, Ishida N (eds) Neocarzinostatin: The past, present, and future of an anticancer drug. Springer, Berlin Heidelberg New York, p 23

    Google Scholar 

  67. Ohtsuki K, Ono Y (1997) In: Maeda H, Edo K, Ishida N (eds) Neocarzinostatin: The past, present, and future of an anticancer drug. Springer, Berlin Heidelberg New York, p 129

    Google Scholar 

  68. Sato K, Akaike T, Suga M, Ando M, Maeda H (1994) Biochem Biophys Res Commun 205:1716

    Article  CAS  Google Scholar 

  69. Maeda H (1991) Adv Drug Deliv Rev 6:181

    Article  CAS  Google Scholar 

  70. Seymour LW, Olliff SP, Poole CJ, De Takats PG, Orme R, Ferry DR, Maeda H, Konno T, Kerr DJ (1998) Int J Oncol 12:1217

    CAS  Google Scholar 

  71. Abe S, Okubo Y, Ejiri Y, Kume K, Otsuki M (2000) J Gastroenterol 35:28

    Article  CAS  Google Scholar 

  72. Okusaka T, Okada S, Ishii H, Ikeda M, Nakasuka H, Nagahama H, Iwata R, Furukawa H, Takayasu K, Nakanishi Y, Sakamoto M, Hirohashi S, Yoshimori M (1998) Oncology 55:276

    Article  CAS  Google Scholar 

  73. Okusaka T, Okada S, Ueno H, Ikeda M, Iwata R, Furukawa H, Takayasu K, Moriyama N, Sato T, Sato K (2002) Oncology 62:228

    Article  CAS  Google Scholar 

  74. Greenstein JP (1954) Biochemistry of cancer, 2nd edn. Academic, New York

    Google Scholar 

  75. Amanaka NY, Deamer D (1974) Physiol Chem Phys 6:95

    Google Scholar 

  76. Sato K, Ito K, Kohara H, Yamaguchi Y, Adachi K, Endo H (1992) Mol Cell Biol 12:2525

    CAS  Google Scholar 

  77. Maines MD, Abrahamsson PA (1996) Urology 47:727

    Article  CAS  Google Scholar 

  78. Goodman AI, Choudhury M, da Silva JL, Schwartzman ML, Abraham NG (1997) Proc Soc Exp Biol Med 214:54

    CAS  Google Scholar 

  79. Doi K, Akaike T, Fujii S, Tanaka S, Ikebe N, Beppu T, Shibahara S, Ogawa M, Maeda H (1999) Br J Cancer 80:1954

    Article  CAS  Google Scholar 

  80. Hasegawa Y, Takano T, Miyauchi A, Matsuzuka F, Yoshida H, Kuma K, Amino N (2002) Cancer Lett 182:69

    CAS  Google Scholar 

  81. Tanaka S, Akaike T, Fang J, Beppu T, Ogawa M, Tamura F, Miyamoto Y, Maeda H (2003) Br J Cancer 82:902

    Article  Google Scholar 

  82. Schacter BA (1988) Semin Hematol 25:349

    CAS  Google Scholar 

  83. Maines MD (1988) FASEB J 2:2557

    CAS  Google Scholar 

  84. Minetti M, Mallozzi C, DiStasi AM, Pietraforte D (1998) Arch Biochem Biophys 352:165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Maeda .

Editor information

Ronit Satchi-Fainaro Ruth Duncan

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Maeda, H., Greish, K., Fang, J. The EPR Effect and Polymeric Drugs: A Paradigm Shift for Cancer Chemotherapy in the 21st Century. In: Satchi-Fainaro, R., Duncan, R. (eds) Polymer Therapeutics II. Advances in Polymer Science, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_026

Download citation

Publish with us

Policies and ethics