Skip to main content

Abstract

It has been documented that skin resident cells can produce and further metabolize catecholamines, serotonin, and histamine (Fitzpatrick et al. 1993; Gillbro et al. 2004; Schallreuter et al. 1995; Slominski et al. 2005c). These biogenic amines not only regulate phenotype of skin cells cultured in vitro but also can affect skin functions and may have systemic effects (Schallreuter et al. 1997; Slominski and Wortsman 2000; Slominski et al. 2005c). The functional activity of biogenic amines in the skin is mediated through the interactions with specific cell surface receptors (Gillbro et al. 2004; Nordlind et al. 2008; Slominski et al. 2003d); however, non-receptor effects are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albanesi C, Pastore S, Fanales-Belasio E, Girolomoni G (1998) Cetirizine and hydrocortisone differentially regulate ICAM-1 expression and chemokine release in cultured human keratinocytes. Clin Exp Allergy 28:101–109

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC (2001) Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res Bull 56:413–424

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC (2007) Serotonin and brain: evolution, neuroplasticity, and homeostasis. Int Rev Neurobiol 77:31–56

    Article  PubMed  CAS  Google Scholar 

  • Azmitia EC (2010) Evolution of serotonin: sunlight to suicide. In: Muller CP, Jacobs BL (eds) Handbook of the behavioral neurobiology of serotonin. Academic Press, Burlington, MA

    Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    Article  PubMed  CAS  Google Scholar 

  • Benton T, Lynch K, Dube B, Gettes DR, Tustin NB, Ping Lai J, Metzger DS, Blume J, Douglas SD, Evans DL (2010) Selective serotonin reuptake inhibitor suppression of HIV infectivity and replication. Psychosom Med 72:925–932

    Article  PubMed  CAS  Google Scholar 

  • Bergmann M, Sautner T (2002) Immunomodulatory effects of vasoactive catecholamines. Wien Klin Wochenschr 114:752–761

    PubMed  CAS  Google Scholar 

  • Bergquist J, Josefsson E, Tarkowski A, Ekman R, Ewing A (1997) Measurements of catecholamine-mediated apoptosis of immunocompetent cells by capillary electrophoresis. Electrophoresis 18:1760–1766

    Article  PubMed  CAS  Google Scholar 

  • Besser MJ, Ganor Y, Levite M (2005) Dopamine by itself activates either D2, D3 or D1/D5 dopaminergic receptors in normal human T-cells and triggers the selective secretion of either IL-10, TNFalpha or both. J Neuroimmunol 169:161–171

    Article  PubMed  CAS  Google Scholar 

  • Betten A, Dahlgren C, Hermodsson S, Hellstrand K (2001) Serotonin protects NK cells against oxidatively induced functional inhibition and apoptosis. J Leukoc Biol 70:65–72

    PubMed  CAS  Google Scholar 

  • Bissonnette EY, Befus AD (1997) Anti-inflammatory effect of beta 2-agonists: inhibition of TNF-alpha release from human mast cells. J Allergy Clin Immunol 100:825–831

    Article  PubMed  CAS  Google Scholar 

  • Blau N, Van Spronsen FJ, Levy HL (2010) Phenylketonuria. Lancet 376:1417–1427

    Article  PubMed  CAS  Google Scholar 

  • Branchek TA, Mawe GM, Gershon MD (1988) Characterization and localization of a peripheral neural 5-hydroxytryptamine receptor subtype (5-HT1P) with a selective agonist, 3H-5-hydroxyindalpine. J Neurosci 8:2582–2595

    PubMed  CAS  Google Scholar 

  • Carlton SM, Coggeshall RE (1997) Immunohistochemical localization of 5-HT2A receptors in peripheral sensory axons in rat glabrous skin. Brain Res 763:271–275

    Article  PubMed  CAS  Google Scholar 

  • Carrier Y, Ma HL, Ramon HE, Napierata L, Small C, O’toole M, Young DA, Fouser LA, Nickerson-Nutter C, Collins M, Dunussi-Joannopoulos K, Medley QG (2011) Inter-regulation of Th17 cytokines and the il-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J Invest Dermatol 131:2428–2437

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Hoffman BB, Isseroff RR (2002) Beta-adrenergic receptor activation inhibits keratinocyte migration via a cyclic adenosine monophosphate-independent mechanism. J Invest Dermatol 119:1261–1268

    Article  PubMed  CAS  Google Scholar 

  • Cloez-Tayarani I, Changeux JP (2007) Nicotine and serotonin in immune regulation and inflammatory processes: a perspective. J Leukoc Biol 81:599–606

    Article  PubMed  CAS  Google Scholar 

  • Coburn SP, Slominski A, Mahuren JD, Wortsman J, Hessle L, Millan JL (2003) Cutaneous metabolism of vitamin B-6. J Invest Dermatol 120:292–300

    Article  PubMed  CAS  Google Scholar 

  • Cotecchia S (2010) The alpha1-adrenergic receptors: diversity of signaling networks and regulation. J Recept Signal Transduct Res 30:410–419

    Article  PubMed  CAS  Google Scholar 

  • Davis SC, Clark S, Hayes JR, Green TL, Gruetter CA (2011) Up-regulation of histidine decarboxylase expression and histamine content in B16F10 murine melanoma cells. Inflamm Res 60:55–61

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra D, Leurs R, Chazot P, Shenton FC, Stark H, Werfel T, Gutzmer R (2007) Histamine downregulates monocyte CCL2 production through the histamine H4 receptor. J Allergy Clin Immunol 120:300–307

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Jiang M, Li S, Zhang Y (1995) Vascular barrier-enhancing effect of an endogenous beta-adrenergic agonist. Inflammation 19:1–8

    Article  PubMed  CAS  Google Scholar 

  • Drummond PD, Skipworth S, Finch PM (1996) alpha 1-adrenoceptors in normal and hyperalgesic human skin. Clin Sci (Lond) 91:73–77

    CAS  Google Scholar 

  • Eisenhofer G, Tian H, Holmes C, Matsunaga J, Roffler-Tarlov S, Hearing VJ (2003) Tyrosinase: a developmentally specific major determinant of peripheral dopamine. FASEB J 17:1248–1255

    Article  PubMed  CAS  Google Scholar 

  • Falck B, Bendsoe N, Ronquist G (2004) Mediated exodus of L-dopa from human epidermal Langerhans cells. Amino Acids 26:133–138

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick TB, Wolff K, Freedberg IM, Austen KF (1993) Dermatology in general medicine. McGraw Hill, New York

    Google Scholar 

  • Fitzsimons C, Engel N, Policastro L, Duran H, Molinari B, Rivera E (2002) Regulation of phospholipase C activation by the number of H(2) receptors during Ca(2+)-induced differentiation of mouse keratinocytes. Biochem Pharmacol 63:1785–1796

    Article  PubMed  CAS  Google Scholar 

  • Fujii E, Irie K, Uchida Y, Tsukahara F, Muraki T (1994) Possible role of nitric oxide in 5-hydroxytryptamine-induced increase in vascular permeability in mouse skin. Naunyn Schmiedebergs Arch Pharmacol 350:361–364

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto S, Komine M, Karakawa M, Uratsuji H, Kagami S, Tada Y, Saeki H, Ohtsuki M, Tamaki K (2011) Histamine differentially regulates the production of Th1 and Th2 chemokines by keratinocytes through histamine H1 receptor. Cytokine 54:191–199

    Article  PubMed  CAS  Google Scholar 

  • Fuziwara S, Suzuki A, Inoue K, Denda M (2005) Dopamine D2-like receptor agonists accelerate barrier repair and inhibit the epidermal hyperplasia induced by barrier disruption. J Invest Dermatol 125:783–789

    Article  PubMed  CAS  Google Scholar 

  • Gambichler T, Bader A, Vojvodic M, Bechara FG, Sauermann K, Altmeyer P, Hoffmann K (2002) Impact of UVA exposure on psychological parameters and circulating serotonin and melatonin. BMC Dermatol 2:6

    Article  PubMed  Google Scholar 

  • Garssen J, De Gruijl F, Mol D, De Klerk A, Roholl P, Van Loveren H (2001) UVA exposure affects UVB and cis-urocanic acid-induced systemic suppression of immune responses in Listeria monocytogenes-infected Balb/c mice. Photochem Photobiol 73:432–438

    Article  PubMed  CAS  Google Scholar 

  • Gaudet SJ, Slominski A, Etminan M, Pruski D, Paus R, MaA N (1993) Identification and characterization of two isozymic forms of arylamine N-acetyltransferase in Syrian hamster skin. J Invest Dermatol 101:660–665

    Article  PubMed  CAS  Google Scholar 

  • Ghoghawala SY, Mannis MJ, Pullar CE, Rosenblatt MI, Isseroff RR (2008) Beta2-adrenergic receptor signaling mediates corneal epithelial wound repair. Invest Ophthalmol Vis Sci 49:1857–1863

    Article  PubMed  Google Scholar 

  • Gillbro JM, Marles LK, Hibberts NA, Schallreuter KU (2004) Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes. J Invest Dermatol 123:346–353

    Article  PubMed  CAS  Google Scholar 

  • Giustizieri ML, Albanesi C, Fluhr J, Gisondi P, Norgauer J, Girolomoni G (2004) H1 histamine receptor mediates inflammatory responses in human keratinocytes. J Allergy Clin Immunol 114:1176–1182

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Pittelkow MR, Schallreuter KU (2006) Adrenergic and cholinergic control in the biology of epidermis: physiological and clinical significance. J Invest Dermatol 126:1948–1965

    Article  PubMed  CAS  Google Scholar 

  • Gschwandtner M, Purwar R, Wittmann M, Baumer W, Kietzmann M, Werfel T, Gutzmer R (2008) Histamine upregulates keratinocyte MMP-9 production via the histamine H1 receptor. J Invest Dermatol 128:2783–2791

    Article  PubMed  CAS  Google Scholar 

  • Gutzmer R, Mommert S, Gschwandtner M, Zwingmann K, Stark H, Werfel T (2009) The histamine H4 receptor is functionally expressed on T(H)2 cells. J Allergy Clin Immunol 123:619–625

    Article  PubMed  CAS  Google Scholar 

  • Haak-Frendscho M, Darvas Z, Hegyesi H, Karpati S, Hoffman RL, Laszlo V, Bencsath M, Szalai C, Furesz J, Timar J, Bata-Csorgo Z, Szabad G, Pivarcsi A, Pallinger E, Kemeny L, Horvath A, Dobozy A, Falus A (2000) Histidine decarboxylase expression in human melanoma. J Invest Dermatol 115:345–352

    Article  PubMed  CAS  Google Scholar 

  • Hara MR, Kovacs JJ, Whalen EJ, Rajagopal S, Strachan RT, Grant W, Towers AJ, Williams B, Lam CM, Xiao K, Shenoy SK, Gregory SG, Ahn S, Duckett DR, Lefkowitz RJ (2011) A stress response pathway regulates DNA damage through beta(2)-adrenoreceptors and beta-arrestin-1. Nature 477:349–353

    Article  PubMed  CAS  Google Scholar 

  • Harada K, Ohashi K, Fujimura A, Kumagai Y, Ebihara A (1996) Effect of alpha 1-adrenoceptor antagonists, prazosin and urapidil, on a finger skin vasoconstrictor response to cold stimulation. Eur J Clin Pharmacol 49:371–375

    PubMed  CAS  Google Scholar 

  • Harrington LE, Mangan PR, Weaver CT (2006) Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr Opin Immunol 18:349–356

    Article  PubMed  CAS  Google Scholar 

  • Hasse S, Chernyavsky AI, Grando SA, Paus R (2007) The M4 muscarinic acetylcholine receptor plays a key role in the control of murine hair follicle cycling and pigmentation. Life Sci 80:2248–2252

    Article  PubMed  CAS  Google Scholar 

  • Hein L (2006) Adrenoceptors and signal transduction in neurons. Cell Tissue Res 326:541–551

    Article  PubMed  CAS  Google Scholar 

  • Hickman AB, Namboodiri MA, Klein DC, Dyda F (1999) The structural basis of ordered substrate binding by serotonin N-acetyltransferase: enzyme complex at 1.8 A resolution with a bisubstrate analog. Cell 97:361–369

    Article  PubMed  CAS  Google Scholar 

  • Howe J, Costantino R, Slominski A (1991) On the putative mechanism of induction and regulation of melanogenesis by L-tyrosine. Acta Derm Venereol 71:150–152

    PubMed  CAS  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    Article  PubMed  CAS  Google Scholar 

  • Hsueh CM, Chen SF, Lin RJ, Chao HJ (2002) Cholinergic and serotonergic activities are required in triggering conditioned NK cell response. J Neuroimmunol 123:102–111

    Article  PubMed  CAS  Google Scholar 

  • Hu DN (2000) Regulation of growth and melanogenesis of uveal melanocytes. Pigment Cell Res 13(Suppl 8):81–86

    Article  PubMed  Google Scholar 

  • Hu DN, Woodward DF, Mccormick SA (2000) Influence of autonomic neurotransmitters on human uveal melanocytes in vitro. Exp Eye Res 71:217–224

    Article  PubMed  CAS  Google Scholar 

  • Huttunen M, Hyttinen M, Nilsson G, Butterfield JH, Horsmanheimo M, Harvima IT (2001) Inhibition of keratinocyte growth in cell culture and whole skin culture by mast cell mediators. Exp Dermatol 10:184–192

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Kanda N, Hau CS, Tada Y, Watanabe S (2009) Histamine induces human beta-defensin-3 production in human keratinocytes. J Dermatol Sci 56:121–127

    Article  PubMed  CAS  Google Scholar 

  • Jangi SM, Diaz-Perez JL, Ochoa-Lizarralde B, Martin-Ruiz I, Asumendi A, Perez-Yarza G, Gardeazabal J, Diaz-Ramon JL, Boyano MD (2006) H1 histamine receptor antagonists induce genotoxic and caspase-2-dependent apoptosis in human melanoma cells. Carcinogenesis 27:1787–1796

    Article  PubMed  CAS  Google Scholar 

  • Kanda N, Watanabe S (2003) Histamine enhances the production of nerve growth factor in human keratinocytes. J Invest Dermatol 121:570–577

    Article  PubMed  CAS  Google Scholar 

  • Kanda N, Watanabe S (2004) Histamine enhances the production of granulocyte-macrophage colony-stimulating factor via protein kinase Calpha and extracellular signal-regulated kinase in human keratinocytes. J Invest Dermatol 122:863–872

    Article  PubMed  CAS  Google Scholar 

  • Kanda N, Watanabe S (2007) Histamine enhances the production of human beta-defensin-2 in human keratinocytes. Am J Physiol Cell Physiol 293:C1916–C1923

    Article  PubMed  CAS  Google Scholar 

  • Kaneko K, Travers JB, Matsui MS, Young AR, Norval M, Walker SL (2009) cis-Urocanic acid stimulates primary human keratinocytes independently of serotonin or platelet-activating factor receptors. J Invest Dermatol 129:2567–2573

    Article  PubMed  CAS  Google Scholar 

  • Khalil Z, Helme RD (1990) Serotonin modulates substance P-induced plasma extravasation and vasodilatation in rat skin by an action through capsaicin-sensitive primary afferent nerves. Brain Res 527:292–298

    Article  PubMed  CAS  Google Scholar 

  • Khalil EM, De Angelis J, Cole PA (1998) Indoleamine analogs as probes of the substrate selectivity and catalytic mechanism of serotonin N-acetyltransferase. J Biol Chem 273:30321–30327

    Article  PubMed  CAS  Google Scholar 

  • Kim NH, Lee AY (2010) Histamine effect on melanocyte proliferation and vitiliginous keratinocyte survival. Exp Dermatol 19:1073–1079

    Article  PubMed  CAS  Google Scholar 

  • Klein DC (2004) The 2004 Aschoff/Pittendrigh lecture: theory of the origin of the pineal gland—a tale of conflict and resolution. J Biol Rhythms 19:264–279

    Article  PubMed  CAS  Google Scholar 

  • Koizumi H, Ohkawara A (1999) H2 histamine receptor-mediated increase in intracellular Ca2+ in cultured human keratinocytes. J Dermatol Sci 21:127–132

    Article  PubMed  CAS  Google Scholar 

  • Koizumi H, Shimizu T, Nishino H, Ohkawara A (1998) Cis-urocanic acid attenuates histamine receptor-mediated activation of adenylate cyclase and increase in intracellular Ca2+. Arch Dermatol Res 290:264–269

    Article  PubMed  CAS  Google Scholar 

  • Lands AM, Arnold A, Mcauliff JP, Luduena FP, Brown TG Jr (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597–598

    Article  PubMed  CAS  Google Scholar 

  • Lassalle MW, Igarashi S, Sasaki M, Wakamatsu K, Ito S, Horikoshi T (2003) Effects of melanogenesis-inducing nitric oxide and histamine on the production of eumelanin and pheomelanin in cultured human melanocytes. Pigment Cell Res 16:81–84

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre H, Compagnon P, Contesse V, Delarue C, Thuillez C, Vaudry H, Kuhn JM (2001) Production and metabolism of serotonin (5-HT) by the human adrenal cortex: paracrine stimulation of aldosterone secretion by 5-HT. J Clin Endocrinol Metab 86:5001–5007

    Article  PubMed  CAS  Google Scholar 

  • Ling P, Ngo K, Nguyen S, Thurmond RL, Edwards JP, Karlsson L, Fung-Leung WP (2004) Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation. Br J Pharmacol 142:161–171

    Article  PubMed  CAS  Google Scholar 

  • Lonne-Rahm SB, Rickberg H, El-Nour H, Marin P, Azmitia EC, Nordlind K (2008) Neuroimmune mechanisms in patients with atopic dermatitis during chronic stress. J Eur Acad Dermatol Venereol 22:11–18

    Article  PubMed  CAS  Google Scholar 

  • Mammone T, Marenus K, Maes D, Lockshin RA (1998) The induction of terminal differentiation markers by the cAMP pathway in human HaCaT keratinocytes. Skin Pharmacol Appl Skin Physiol 11:152–160

    Article  PubMed  CAS  Google Scholar 

  • Martin-Ezquerra G, Man MQ, Hupe M, Rodriguez-Martin M, Youm JK, Trullas C, Mackenzie DS, Radek KA, Holleran WM, Elias PM (2011) Psychological stress regulates antimicrobial peptide expression by both glucocorticoid and beta-adrenergic mechanisms. Eur J Dermatol 21(Suppl 2):48–51

    PubMed  CAS  Google Scholar 

  • Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Hou Z, Mistry M, Bailey JP, Nieport KM, Walther DJ, Bader M, Horseman ND (2004) Serotonin regulates mammary gland development via an autocrine-paracrine loop. Dev Cell 6:193–203

    Article  PubMed  CAS  Google Scholar 

  • Maurer M, Opitz M, Henz BM, Paus R (1997) The mast cell products histamine and serotonin stimulate and TNF-alpha inhibits the proliferation of murine epidermal keratinocytes in situ. J Dermatol Sci 16:79–84

    Article  PubMed  CAS  Google Scholar 

  • Mazzoni A, Leifer CA, Mullen GE, Kennedy MN, Klinman DM, Segal DM (2003) Cutting edge: histamine inhibits IFN-alpha release from plasmacytoid dendritic cells. J Immunol 170:2269–2273

    PubMed  CAS  Google Scholar 

  • Memoli S, Napolitano A, D’ischia M, Misuraca G, Palumbo A, Prota G (1997) Diffusible melanin-related metabolites are potent inhibitors of lipid peroxidation. Biochim Biophys Acta 1346:61–68

    Article  PubMed  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Mockus SM, Vrana KE (1998) Advances in the molecular characterization of tryptophan hydroxylase. J Mol Neurosci 10:163–179

    Article  PubMed  CAS  Google Scholar 

  • Moniaga CS, Egawa G, Doi H, Miyachi Y, Kabashima K (2011) Histamine modulates the responsiveness of keratinocytes to IL-17 and TNF-alpha through the H1-receptor. J Dermatol Sci 61:79–81

    Article  PubMed  CAS  Google Scholar 

  • Mossner R, Lesch KP (1998) Role of serotonin in the immune system and in neuroimmune interactions. Brain Behav Immun 12:249–271

    Article  PubMed  CAS  Google Scholar 

  • Musso NR, Brenci S, Indiveri F, Lotti G (1997) L-tyrosine and nicotine induce synthesis of L-Dopa and norepinephrine in human lymphocytes. J Neuroimmunol 74:117–120

    Article  PubMed  CAS  Google Scholar 

  • Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N, Tanaka S, Katsuki I, Matsushita S, Tanaka Y (2011) Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 186:3745–3752

    Article  PubMed  CAS  Google Scholar 

  • Napolitano A, Memoli S, Nappi AJ, D’ischia M, Prota G (1996) 5-S-cysteinyldopa, a diffusible product of melanocyte activity, is an efficient inhibitor of hydroxylation/oxidation reactions induced by the Fenton system. Biochim Biophys Acta 1291:75–82

    Article  PubMed  Google Scholar 

  • Nelson M, Foxwell AR, Tyrer P, Dean RT (2007) Protein-bound 3,4-dihydroxy-phenylanine (DOPA), a redox-active product of protein oxidation, as a trigger for antioxidant defences. Int J Biochem Cell Biol 39:879–889

    Article  PubMed  CAS  Google Scholar 

  • Nordlind K, Azmitia EC, Slominski A (2008) The skin as a mirror of the soul: exploring the possible roles of serotonin. Exp Dermatol 17:301–311

    Article  PubMed  CAS  Google Scholar 

  • Okayama Y, Church MK (1992) Comparison of the modulatory effect of ketotifen, sodium cromoglycate, procaterol and salbutamol in human skin, lung and tonsil mast cells. Int Arch Allergy Immunol 97:216–225

    Article  PubMed  CAS  Google Scholar 

  • Page-Mccaw PS, Chung SC, Muto A, Roeser T, Staub W, Finger-Baier KC, Korenbrot JI, Baier H (2004) Retinal network adaptation to bright light requires tyrosinase. Nat Neurosci 7:1329–1336

    Article  PubMed  CAS  Google Scholar 

  • Park HY, Kosmadaki M, Yaar M, Gilchrest BA (2009) Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci 66:1493–1506

    Article  PubMed  CAS  Google Scholar 

  • Pullar CE, Isseroff RR (2006) The beta 2-adrenergic receptor activates pro-migratory and pro-proliferative pathways in dermal fibroblasts via divergent mechanisms. J Cell Sci 119:592–602

    Article  PubMed  CAS  Google Scholar 

  • Pullar CE, Isseroff RR, Nuccitelli R (2001) Cyclic AMP-dependent protein kinase A plays a role in the directed migration of human keratinocytes in a DC electric field. Cell Motil Cytoskeleton 50:207–217

    Article  PubMed  CAS  Google Scholar 

  • Pullar CE, Manabat-Hidalgo CG, Bolaji RS, Isseroff RR (2008) beta-Adrenergic receptor modulation of wound repair. Pharmacol Res 58:158–164

    Article  PubMed  CAS  Google Scholar 

  • Rasul A, El-Nour H, Blakely RD, Lonne-Rahm SB, Forsberg J, Johansson B, Theodorsson E, Nordlind K (2011) Effect of chronic mild stress on serotonergic markers in the skin and brain of the NC/Nga atopic-like mouse strain. Arch Dermatol Res 303:625–633

    Article  PubMed  CAS  Google Scholar 

  • Reiter RJ (1991) Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr Rev 12:151–180

    Article  PubMed  CAS  Google Scholar 

  • Roseboom PH, Namboodiri MA, Zimonjic DB, Popescu NC, Rodriguez IR, Gastel JA, Klein DC (1998) Natural melatonin ‘knockdown’ in C57BL/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Brain Res Mol Brain Res 63:189–197

    Article  PubMed  CAS  Google Scholar 

  • Saha B, Mondal AC, Basu S, Dasgupta PS (2001) Circulating dopamine level, in lung carcinoma patients, inhibits proliferation and cytotoxicity of CD4+ and CD8+ T cells by D1 dopamine receptors: an in vitro analysis. Int Immunopharmacol 1:1363–1374

    Article  PubMed  CAS  Google Scholar 

  • Salim S, Ali SA (2011) Vertebrate melanophores as potential model for drug discovery and development: a review. Cell Mol Biol Lett 16:162–200

    Article  PubMed  CAS  Google Scholar 

  • Scarparo AC, Visconti MA, De Oliveira AR, Castrucci AM (2000) Adrenoceptors in normal and malignant human melanocytes. Arch Dermatol Res 292:265–267

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter KU, Wood JM, Lemke R, Lepoole C, Das P, Westerhof W, Pittelkow MR, Thody AJ (1992) Production of catecholamines in the human epidermis. Biochem Biophys Res Comm 189:72–78

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter KU, Wood JM, Pittelkow MR, Swanson NN, Steinkraus V (1993) Increased in vitro expression of beta 2-adrenoceptors in differentiating lesional keratinocytes of vitiligo patients. Arch Dermatol Res 285:216–220

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter KU, Wood JM, Pittelkow MR, Gutlich M, Lemke KR, Rodl W, Swanson NN, Hitzemann K, Ziegler I (1994) Regulation of melanin biosynthesis in the human epidermis by tetrahydrobiopterin. Science 263:1444–1446

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter KU, Lemke KR, Pittelkow MR, Wood JM, Korner C, Malik R (1995) Catecholamines in human keratinocyte differentiation. J Invest Dermatol 104:953–957

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter KU, Korner C, Pittelkow MR, Swanson NN, Gardner ML (1996) The induction of the alpha-1-adrenoceptor signal transduction system on human melanocytes. Exp Dermatol 5:20–23

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter KU, Pittelkow MR, Swanson NN, Beazley WD, Korner C, Ehrke C, Buttner G (1997) Altered catecholamine synthesis and degradation in the epidermis of patients with atopic eczema. Arch Dermatol Res 289:663–666

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter KU, Beazley WD, Hibberts NA, Tobin DJ, Paus R, Wood JM (1998) Pterins in human hair follicle cells and in the synchronized murine hair cycle. J Invest Dermatol 111:545–550

    Article  PubMed  CAS  Google Scholar 

  • Schallreuter KU, Bahadoran P, Picardo M, Slominski A, Elassiuty YE, Kemp EH, Giachino C, Liu JB, Luiten RM, Lambe T, Le Poole IC, Dammak I, Onay H, Zmijewski MA, Dell’anna ML, Zeegers MP, Cornall RJ, Paus R, Ortonne JP, Westerhof W (2008a) Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else? Exp Dermatol 17:139–140, discussion 141-160

    PubMed  CAS  Google Scholar 

  • Schallreuter KU, Kothari S, Chavan B, Spencer JD (2008b) Regulation of melanogenesis–controversies and new concepts. Exp Dermatol 17:395–404

    Article  PubMed  CAS  Google Scholar 

  • Scislowski PW, Slominski A, Bomirski A (1984) Biochemical characterization of three hamster melanoma variants—II. Glycolysis and oxygen consumption. Int J Biochem 16:327–331

    Article  PubMed  CAS  Google Scholar 

  • Scislowski PW, Slominski A, Bomirski A, Zydowo M (1985) Metabolic characterization of three hamster melanoma variants. Neoplasma 32:593–598

    PubMed  CAS  Google Scholar 

  • Seiffert K, Hosoi J, Torii H, Ozawa H, Ding W, Campton K, Wagner JA, Granstein RD (2002) Catecholamines inhibit the antigen-presenting capability of epidermal Langerhans cells. J Immunol 168:6128–6135

    PubMed  CAS  Google Scholar 

  • Semak I, Korik E, Naumova M, Wortsman J, Slominski A (2004) Serotonin metabolism in rat skin: characterization by liquid chromatography-mass spectrometry. Arch Biochem Biophys 421:61–66

    Article  PubMed  CAS  Google Scholar 

  • Seuwen K, Pouysségur J (1990) Serotonin as a growth factor. Biochem Pharmacol 39(6):985–990

    Article  PubMed  CAS  Google Scholar 

  • Shinoda S, Kameyoshi Y, Hide M, Morita E, Yamamoto S (1998) Histamine enhances UVB-induced IL-6 production by human keratinocytes. Arch Dermatol Res 290:429–434

    Article  PubMed  CAS  Google Scholar 

  • Sivamani RK, Lam ST, Isseroff RR (2007) Beta adrenergic receptors in keratinocytes. Dermatol Clin 25:643–653

    Article  PubMed  CAS  Google Scholar 

  • Sivamani RK, Porter SM, Isseroff RR (2009) An epinephrine-dependent mechanism for the control of UV-induced pigmentation. J Invest Dermatol 129:784–787

    Article  PubMed  CAS  Google Scholar 

  • Slominski A (2005) Neuroendocrine system of the skin. Dermatology 211:199–208

    Article  PubMed  Google Scholar 

  • Slominski A, Friedrich T (1992) L-DOPA inhibits in vitro phosphorylation of melanoma glycoproteins. Pigment Cell Res 5:396–400

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Goodman-Snitkoff GG (1992) Dopa inhibits induced proliferative activity of murine and human lymphocytes. Anticancer Res 12:753–756

    PubMed  CAS  Google Scholar 

  • Slominski A, Paus R (1990) Are L-tyrosine and L-dopa hormone-like bioregulators. J Theor Biol 143:123–138

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Paus R (1994) Towards defining receptors for L-tyrosine and L-dopa. Mol Cell Endocrinol 99:C7–C11

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Wortsman J (2000) Neuroendocrinology of the skin. Endocrine Rev 21:457–487

    Article  CAS  Google Scholar 

  • Slominski A, Paus R, Schadendorf D (1993a) Melanocytes as “sensory” and regulatory cells in the epidermis. J Theor Biol 164:103–120

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Paus R, Mihm MC (1998c) Inhibition of melanogenesis as an adjuvant strategy in the treatment of melanotic melanomas: selective review and hypothesis. Anticancer Res 18:3709–3715

    PubMed  CAS  Google Scholar 

  • Slominski A, Pisarchik A, Semak I, Sweatman T, Szczesniewski A, Wortsman J (2002a) Serotoninergic system in hamster skin. J Invest Dermatol 119:934–942

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Semak I, Pisarchik A, Sweatman T, Szczesniewski A, Wortsman J (2002c) Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett 511:102–106

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Pisarchik A, Johansson O, Jing C, Semak I, Slugocki G, Wortsman J (2003a) Tryptophan hydroxylase expression in human skin cells. Biochim Biophys Acta 1639:80–86

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Wortsman J, Linton E, Pisarchik A, Zbytek B (2003b) The skin as a model for the immunomodulatory effects of corticotropin-releasing hormone. In: Schaefer M, Stein C (eds) Mind over matter—regulation of peripheral inflammation by the CNS. Birkhaeuser Verlag, Basel, Boston, Berlin

    Google Scholar 

  • Slominski A, Pisarchik A, Semak I, Sweatman T, Wortsman J (2003c) Characterization of the serotoninergic system in the C57BL/6 mouse skin. Eur J Biochem 270:3335–3344

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J (2003d) Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol 196:144–153

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Pisarchik A, Wortsman J (2004b) Expression of genes coding melatonin and serotonin receptors in rodent skin. Biochim Biophys Acta 1680:67–70

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004c) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Wortsman J, Tobin DJ (2005c) The cutaneous serotoninergic/melatoninergic system: securing a place under the sun. FASEB J 19:176–194

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Zbytek B, Semak I, Sweatman T, Wortsman J (2005d) CRH stimulates POMC activity and corticosterone production in dermal fibroblasts. J Neuroimmunol 162:97–102

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Tobin DJ, Zmijewski MA, Wortsman J, Paus R (2008a) Melatonin in the skin: synthesis, metabolism and functions. Trends Endo Metab 19:17–24

    Article  CAS  Google Scholar 

  • Slominski A, Zbytek B, Slominski R (2009b) Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int J Cancer 124:1470–1477

    Article  PubMed  CAS  Google Scholar 

  • Slominski A, Zmijewski M, Pawelek J (2011a) L-tyrosine and L-DOPA as hormone-like regulators of melanocytes functions. Pigment Cell Melanoma Res. doi:10.1111/j.1755-148X.2011.00898.x

    Google Scholar 

  • Sreevidya CS, Khaskhely NM, Fukunaga A, Khaskina P, Ullrich SE (2008) Inhibition of photocarcinogenesis by platelet-activating factor or serotonin receptor antagonists. Cancer Res 68:3978–3984

    Article  PubMed  CAS  Google Scholar 

  • Sreevidya CS, Fukunaga A, Khaskhely NM, Masaki T, Ono R, Nishigori C, Ullrich SE (2010) Agents that reverse UV-Induced immune suppression and photocarcinogenesis affect DNA repair. J Invest Dermatol 130:1428–1437

    Article  PubMed  CAS  Google Scholar 

  • Steinkraus V, Steinfath M, Korner C, Mensing H (1992) Binding of beta-adrenergic receptors in human skin. J Invest Dermatol 98:475–480

    Article  PubMed  CAS  Google Scholar 

  • Steinkraus V, Mak JC, Pichlmeier U, Mensing H, Ring J, Barnes PJ (1996) Autoradiographic mapping of beta-adrenoceptors in human skin. Arch Dermatol Res 288:549–553

    Article  PubMed  CAS  Google Scholar 

  • Tachibana T, Taniguchi S, Furukawa F, Miwa S, Imamura S (1990) Serotonin metabolism in the arthus reaction. J Invest Dermatol 94:120–125

    Article  PubMed  CAS  Google Scholar 

  • Tachibana T, Endoh M, Fujiwara N, Nawa T (2005) Receptors and transporter for serotonin in Merkel cell-nerve endings in the rat sinus hair follicle. An immunohistochemical study. Arch Histol Cytol 68:19–28

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Kinouchi M, Tamura T, Iizuka H (1996) Decreased beta 2-adrenergic receptor-mRNA and loricrin-mRNA, and increased involucrin-mRNA transcripts in psoriatic epidermis: analysis by reverse transcription-polymerase chain reaction. Br J Dermatol 134:1065–1069

    Article  PubMed  CAS  Google Scholar 

  • Thorslund K, El-Nour H, Nordlind K (2009) The serotonin transporter protein is expressed in psoriasis, where it may play a role in regulating apoptosis. Arch Dermatol Res 301:449–457

    Article  PubMed  CAS  Google Scholar 

  • Tsang AH, Chung KK (2009) Oxidative and nitrosative stress in Parkinson’s disease. Biochim Biophys Acta 1792:643–650

    Article  PubMed  CAS  Google Scholar 

  • Walterscheid JP, Nghiem DX, Kazimi N, Nutt LK, Mcconkey DJ, Norval M, Ullrich SE (2006) Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc Natl Acad Sci USA 103:17420–17425

    Article  PubMed  CAS  Google Scholar 

  • Watson S (1994) Dopamine receptors. In: Watson S, Arkinstall S (eds) The G-protein linked receptor fact book. Academic Press, London, UK

    Google Scholar 

  • Yang G, Zhang G, Pittelkow MR, Ramoni M, Tsao H (2006) Expression profiling of UVB response in melanocytes identifies a set of p53-target genes. J Invest Dermatol 126:2490–2506

    Article  PubMed  CAS  Google Scholar 

  • Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81:1097–1142

    PubMed  CAS  Google Scholar 

  • Yoshida M, Takahashi Y, Inoue S (2000) Histamine induces melanogenesis and morphologic changes by protein kinase A activation via H2 receptors in human normal melanocytes. J Invest Dermatol 114:334–342

    Article  PubMed  CAS  Google Scholar 

  • Yuasa T, Ono M, Watanabe T, Takai T (2001) Lyn is essential for fcgamma receptor III-mediated systemic anaphylaxis but not for the Arthus reaction. J Exp Med 193:563–572

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Thurmond RL, Dunford PJ (2007) The histamine H(4) receptor: a novel modulator of inflammatory and immune disorders. Pharmacol Ther 113:594–606

    Article  PubMed  CAS  Google Scholar 

  • Zmijewski MA, Slominski AT (2009a) CRF1 receptor splicing in epidermal keratinocytes: potential biological role and environmental regulations. J Cell Physiol 218:593–602

    Article  PubMed  CAS  Google Scholar 

  • Zmijewski MA, Sweatman TW, Slominski AT (2009b) The melatonin-producing system is fully functional in retinal pigment epithelium (ARPE-19). Mol Cell Endocrinol 307:211–216

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej T. Slominski .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slominski, A.T., Zmijewski, M.A., Skobowiat, C., Zbytek, B., Slominski, R.M., Steketee, J.D. (2012). Biogenic Amines in the Skin. In: Sensing the Environment: Regulation of Local and Global Homeostasis by the Skin's Neuroendocrine System. Advances in Anatomy, Embryology and Cell Biology, vol 212. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19683-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19683-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19682-9

  • Online ISBN: 978-3-642-19683-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics