Skip to main content

Development of a Process Chain for Nanoparticles Production by Yeasts

  • Chapter
  • First Online:
Metal Nanoparticles in Microbiology

Abstract

Advances in nanotechnology and the constant quest for new materials are the driving forces behind the development of alternative and original nanoparticle synthetic pathways. The biotechnological approach, based on the process of biomineralization, exploits the effectiveness and flexibility of biological systems to synthesize reproducible nanoparticles with well-defined size and structure. The knowledge, regarding physiology, technological clarity and the vast scale-up potential, defines yeasts as an attractive object–producer of nanoparticles, with industrial significance.

The present chapter describes the main technological steps in a biotechnological process, including isolation of commercially relevant yeast strains; cultivation strategies, resulting in high yield; downstream protocols, ensuring products with high purity and quality; and final product characterization. All these procedures form an integrated process chain for the production of nanoparticles by yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica. Mater Lett 63(15):1231–1234

    Article  CAS  Google Scholar 

  • Bae W, Chen X (2004) Proteomic study for the cellular responses to Cd2+ in Schizosaccharomyces pombe through amino acid-coded mass tagging and liquid chromatography tandem mass spectrometry. The American Society for Biochemistry and Molecular Biology, Bethesda, MD

    Google Scholar 

  • Bae W, Mehra RK (1998) Properties of glutathione- and phytochelatin-capped CdS bionanocrystallites. J Inorg Biochem 69(1–2):33–43

    Article  CAS  Google Scholar 

  • Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70(5):518–524

    Article  PubMed  CAS  Google Scholar 

  • Bairbakhish AN, Bollman J, Sprengel C, Thierstein HR (1999) Disintegration of aggregates and coccospheres in sediment trap samples. Mar Micropaleontol 37(2):219–223

    Article  Google Scholar 

  • Bankar AV, Kumar AR, Zinjarde SS (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84(5):847–865

    Article  PubMed  CAS  Google Scholar 

  • Barbas J, Santhanagopalan V, Blaszczynski M, Ellis WRJ, Winge DR (1992) Conversion in the peptides coating cadmium:sulfide crystallites in Candida glabrata. J Inorg Biochem 48(2):95–105

    Article  PubMed  CAS  Google Scholar 

  • Barford JP (1985) Control of fermentation and respiration in Schizosaccharomyces pombe. J Ferment Technol 63(6):495–558

    CAS  Google Scholar 

  • Barnett JA, Payne RW, Yarrow D (1990) Yeasts: characteristics and identification, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Besli N, Gul E, Turker M (1997) Application of fuzzy control to fed-batch yeast fermentation. Lect Note Comput Sci 1226:207–216

    Google Scholar 

  • Beuchat LR (1992) Media for detecting and enumerating yeasts and moulds. Int J Food Microbiol 17(2):145–158

    Article  PubMed  CAS  Google Scholar 

  • Braun R, Sarikaya M, Schulten K (2002) Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics. J Biomater Sci Polym Ed 13(7):747–757

    Article  PubMed  CAS  Google Scholar 

  • Breddam K, Beenfeldt T (1991) Acceleration of yeast autolysis by chemical methods for production of intracellular enzymes. Appl Microbiol Biotechnol 35(3):323–329

    Article  CAS  Google Scholar 

  • Breierova E, Vajczikova I, Sasinkova V, Stratilova E, Fisera M, Gregor T, Sajbidor J (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch C 57(7–8):634–639

    PubMed  CAS  Google Scholar 

  • Brown S, Sarikaya M, Johnson E (2000) A genetic analysis of crystal growth. J Mol Biol 299(3):725–735

    Article  PubMed  CAS  Google Scholar 

  • Brus L (1986) Electronic wave-functions in semiconductor clusters – experiment and theory. J Phys Chem 90(12):2555–2560

    Article  CAS  Google Scholar 

  • Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51(3):351–364

    PubMed  CAS  Google Scholar 

  • Campbell I, Duffus JH (1988) Yeast a practical approach. IRL, Oxford

    Google Scholar 

  • Carney CK, Harry SR, Sewell SL, Wright DW (2007) Detoxification biominerals. Top Curr Chem 270:155–185

    Article  CAS  Google Scholar 

  • Casterline JL, Barnett NM (1982) Cadmium-binding components in soybean plants. Plant Physiol 69(5):1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Cherian G, Chan H (1993) Biological functions of metallothionein – a review. In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III, biological roles and medical implications. Birkhauser, Basel, pp 87–109

    Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. Embo J 18(12):3325–3333

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Csank C, Hayens K (2000) Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett 189(1):115–120

    Article  PubMed  CAS  Google Scholar 

  • Dameron CT, Winge DR (1990a) Peptide-mediated formation of quantum semiconductors. Trends Biotechnol 8(1):3–6

    Article  PubMed  CAS  Google Scholar 

  • Dameron CT, Winge DR (1990b) Characterization of peptide-coated cadmium-sulfide crystallites. Inorg Chem 29(7):1343–1348

    Article  CAS  Google Scholar 

  • Dameron CT, Smith BR, Winge DR (1989a) Glutathione-coated cadmium-sulfide crystallites in Candida-glabrata. J Biol Chem 264(29):17355–17360

    PubMed  CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989b) Biosynthesis of cadmium-sulfide quantum semiconductor crystallites. Nature 338(6216):596–597

    Article  CAS  Google Scholar 

  • De’Deken RH (1966) The crabtree effect: a regulatory system in yeast. J Gen Microbiol 44(2):157–165

    Google Scholar 

  • Downard K (2004) Mass spectrometry: a foundation course. Royal Society of Chemistry, London

    Google Scholar 

  • Dujon B et al (2004) Genome evolution in yeasts. Nature 430(6995):35–44

    Article  PubMed  Google Scholar 

  • Fell JW (1993) Rapid identification of yeast species using three primers in a polymerase chain reaction. Mol Mar Biol Biotechnol 2(3):174–180

    PubMed  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140

    Article  CAS  Google Scholar 

  • Goksungur Y, Uren S, Guvenc U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour Technol 96(1):103–109

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230(4726):674–676

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1986) Synthesis of 7 different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells. FEBS Lett 197(1–2):115–120

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84(2):439–443

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 86(18):6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11(6):1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Hassellöv M, Kaegi R (2009) Analysis and characterization of manufactured nanoparticles in aquatic environments. In: Lead JR, Smith E (eds) Nanoscience and nanotechnology: environmental and human health implications. Wiley, New York, pp 211–266

    Chapter  Google Scholar 

  • Hayashi Y, Nakagawa CW, Uyakul D, Imai K, Isobe M, Goto T (1988) The change of cadystin components in Cd-binding peptides from the fission yeast during their induction by cadmium. Biochem Cell Biol 66(4):288–295

    Article  CAS  Google Scholar 

  • Hayashi Y, Nakagawa CW, Mutoh N, Isobe M, Goto T (1991) Two pathways in the biosynthesis of cadystins (GammaEC)NG in the cell-free system of the fission yeast. Biochem Cell Biol 69(2–3):115–121

    Article  PubMed  CAS  Google Scholar 

  • Hazen KC (1995) New and emerging yeast pathogens. Clin Microbiol Rev 8(4):462–478

    PubMed  CAS  Google Scholar 

  • He S, Guo Z, Zhang S, Wang J, Gu N (2007) Bio- synthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    Article  CAS  Google Scholar 

  • He W, Zhou WJ, Wang YJ, Zhang XD, Zhao HS, Li ZM, Yan SP (2009) Biomineralization of iron phosphate nanoparticles in yeast cells. Mater Sci Eng 29(4):1348–1350

    Article  CAS  Google Scholar 

  • Heslot H, Goffeau A, Louis C (1970a) Respiratory metabolism of a petite-negative yeast Schizosaccharomyces pombe 972 h−1. J Bacteriol 104(1):473–481

    PubMed  CAS  Google Scholar 

  • Heslot H, Louis C, Goffeau A (1970b) Segregational respiratory-deficient mutants of a petite-negative yeast Schizosaccharomyces pombe 972 h−1. J Bacteriol 104(1):482–491

    PubMed  CAS  Google Scholar 

  • Hui YH (2006) Handbook of food science, technology, and engineering. vol. 4, CRC Press, Taylor & Francis Group

    Google Scholar 

  • Ito H, Inouhe M, Tohoyama H, Joho M (2007) Characteristics of copper tolerance in Yarrowia lipolytica. BioMetals 20(5):773–780

    Article  PubMed  CAS  Google Scholar 

  • Jackson PJ, Unkefer CJ, Doolen JA, Watt K, Robinson NJ (1987) Poly(-y glutamylcysteinyl)glycine: its role in cadmium resistance in plant cells. Proc Natl Acad Sci U S A 84(19):6619–6623

    Article  PubMed  CAS  Google Scholar 

  • Jha A, Prasad K, Kulkarni AR (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerfaces 71(2):226–229

    Article  CAS  Google Scholar 

  • Kagi JHR (1993) Evolution, structure, and chemical activity of class I metallothioneins: an overview. In: Suzuki KT, Imura N, Kimura M (eds) Metallothionein III, biological roles and medical implications. Birkhäuser, Basel, pp 29–56

    Google Scholar 

  • Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27(23):8509–8515

    Article  PubMed  CAS  Google Scholar 

  • Knorr D, Shetty KJ, Kinsella JE (1979) Enzymatic lysis of yeast cell walls. Biotechnol Bioeng 21(11):2011–2021

    Article  CAS  Google Scholar 

  • Kondo N, Isobe M, Imai K, Goto T, Murasugi A, Hayashi Y (1983) Structure of cadystin, the unit-peptide of cadmium-binding peptides induced in a fission yeast, Schizosaccharomyces pombe. Tetrahedron Lett 24(9):925–928

    Article  CAS  Google Scholar 

  • Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002a) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14(11):815–818

    Article  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002b) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588

    Article  PubMed  CAS  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95–100

    Article  CAS  Google Scholar 

  • Krumov N, Oder S, Perner-Nochta I, Angelov A, Posten C (2007) Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. J Biotechnol 132(4):481–486

    Article  PubMed  CAS  Google Scholar 

  • Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32(7):1026–1035

    Article  CAS  Google Scholar 

  • Kundu S, Pal A, Ghosh SK, Nath S, Panigrahi S, Praharaj S (2005) Shape-controlled synthesis of gold nanoparticles from gold(III)-chelates of beta-diketones. J Nanopart Res 7(6):641–650

    Article  CAS  Google Scholar 

  • Lachance MA (1988) Restriction mapping of rDNA and taxonomy of Kluyveromyces van der Walt emend. van der Walt. Yeast S(Special Issue) S379–S383

    Google Scholar 

  • Lindner P (1893) Schizosaccharomyces pombe n. sp., ein neuer Gährungserreger. Wochenschrift für Brauerei 10:1298–1300

    Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    Article  PubMed  CAS  Google Scholar 

  • Mann S (1993) Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365(6446):499–505

    Article  CAS  Google Scholar 

  • McSheehy S, Mester Z (2003) The speciation of natural tissues by electrospray-mass spectrometry II: bioinduced ligands and environmental contaminants. Trends Anal Chem 22:311–326

    Article  CAS  Google Scholar 

  • Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of Cu(I) into phytochelatins. Biochem J 307:697–705

    PubMed  CAS  Google Scholar 

  • Mehra RK, Winge DR (1988) Cu(I) binding to the Schizosaccharomyces pombe gamma-glutamyl-transferase peptides varying in chain lengths. Arch Biochem Biophys 265(2):381–389

    Article  PubMed  CAS  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal-ion resistance in fungi – molecular mechanisms and their regulated expression. J Cell Biochem 45(1):30–40

    Article  PubMed  CAS  Google Scholar 

  • Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci U S A 85:8815–8819

    Article  PubMed  CAS  Google Scholar 

  • Mehra RK, Mulchandani P, Hunter TC (1994) Role of Cds quantum crystallites in cadmium resistance in Candida glabrata. Biochem Biophys Res Commun 200(3):1193–1200

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. Microbiol Rev 29(4):653–671

    CAS  Google Scholar 

  • Moreno S, Klar A, Nurse P (1991) Molecular genetic analysis of the fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Article  PubMed  CAS  Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1981a) Cadmium-binding peptide induced in fission yeast, Schizosaccharomyces pombe. J Biochem 90(5):1561–1564

    PubMed  CAS  Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1981b) Purification and unique properties in UV and CD spectra of Cd-binding peptides from Schizosaccharomyces pombe. Biochem Biophys Res Commun 103(3):1021–1028

    Article  PubMed  CAS  Google Scholar 

  • Murasugi A, Wada C, Hayashi Y (1983) Occurrence of acid-labile sulfide in cadmium-binding peptide-1 from fission yeast. J Biochem 93(2):661–664

    PubMed  CAS  Google Scholar 

  • Murphy CJ, Coffer JL (2002) Quantum dots: a primer. Appl Spectrosc 56(1):16–27

    Article  Google Scholar 

  • Nasim A, Young P, Johnson BF (1989) Molecular biology of the fission yeasts. Academic, New York

    Google Scholar 

  • Nies DH, Silver S (2007) Molecular microbiology of heavy metals. Springer, Berlin

    Book  Google Scholar 

  • Nobel A (1868) Improved explosive compound. US Letters Patent No 78317

    Google Scholar 

  • Nozik AJ, Williams F, Nenadovic MT, Rajh T, Micic OI (1985) Size quantization in small semiconductor particles. J Phys Chem 89(3):397–399

    Article  Google Scholar 

  • Obata H, Umebayashi M (1986) Characterization of cadmium-binding complexes from the roots of cadmium-treated rice plant. Soil Sci Plant Nutr 32(3):461–467

    CAS  Google Scholar 

  • Olsson L, Nielsen J (2000) The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilisation of industrial media. Enzyme Microb Technol 26(9–10):785–792

    Article  PubMed  CAS  Google Scholar 

  • Ortiz DF, Ruscitti T, Mccue KF, Ow DW (1995) Transport of metal-binding peptides by Hmt1, a Fission Yeast Abc-Type vacuolar membrane-protein. J Biol Chem 270(9):4721–4728

    Article  PubMed  CAS  Google Scholar 

  • Perego P, Howell SB (1997) Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol Appl Pharmacol 147(2):312–318

    Article  PubMed  CAS  Google Scholar 

  • Pimprikar PS, Joshi SS, Kumar AR, Zinjarde SS, Kulkarni SK (2009) Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids Surf B Biointerfaces 74(1):309–316

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1984) Isolation and partial purification of cadmium-binding protein from roots of the grass agrostis-gigantea. Plant Physiol 74(4):1025–1029

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1990) Phytochelatins. Annu Rev Biochem 59:61–86

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides – structure, biosynthesis, and function. Plant Physiol 109(4):1141–1149

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants – the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31(1):19–48

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE, Curvetto NR (1980) Metallothionein occurs in roots of Agrostis tolerant to excess copper. Nature 287(5782):563–564

    Article  CAS  Google Scholar 

  • Reese RN, Mehra RK, Tarbet EB, Winge DR (1988) Studies on the γ-glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J Biol Chem 263(9):4186–4192

    PubMed  CAS  Google Scholar 

  • Ross S (1994) Toxic metals in soil-plant systems. Wiley, Chichester, UK

    Google Scholar 

  • Rossetti R, Ellison JL, Gibson JM, Brus LE (1984) Size effects in the excited electronic states of small colloidal CdS crystallites. J Chem Phys 80(9):4464–4469

    Article  CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots – evidence for a Cd2+/H+ antiport activity. J Biol Chem 268(17):12297–12302

    PubMed  CAS  Google Scholar 

  • Schlegel HG, Zaborosch C (1992) Allgemeine Mikrobiologie. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Shen R, Lachance MA (1993) Phylogenetic study of ribosomal DNA of cactophilic Pichia species by restriction mapping. Yeast 9(4):315–330

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi SF, Titchener-Hooker NJ, Shamlou PA (1997) High pressure disruption of yeast cells: the use of scale down operations for the prediction of protein release and cell debris size distribution. Biotechnol Bioeng 55(4):642–649

    Article  PubMed  CAS  Google Scholar 

  • Slocik JM, Knecht MR, Wright DW (2004) Biogenic nanoparticles. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch CA, pp 293–308

    Google Scholar 

  • Stiefel J, Wang L, Kelly DA, Janoo R, Seitz J, Whitehall SK, Hoffman CS (2004) Suppressors of an adenylate cyclase deletion in the fission yeast Schizosaccharomyces pombe. Eukaryot Cell 3(3):610–619

    Article  PubMed  CAS  Google Scholar 

  • Strouhal M, Kizek R, Vacek J, Trnkova L, Nemec M (2003) Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica. Bioelectronics 60(1–2):29–36

    CAS  Google Scholar 

  • Vacchina V, Lobinski R, Oven M, Zenk MH (2000) Signal identification in size-exclusion HPLC-ICP-MS chromatograms of plant extracts by electrospray tandem mass spectrometry (ES MS/MS). J Anal At Spectrom 15:529–534

    Article  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96(12):7110–7115

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase – blocked thiols are sufficient for PCsynthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275(40):31451–31459

    Article  PubMed  CAS  Google Scholar 

  • Wagner GJ, Trotter MM (1982) Inducible cadmium binding complexes of cabbage and tobacco. Plant Physiol 69(4):804–809

    Article  PubMed  CAS  Google Scholar 

  • Westwood PK, Martin IV, Fantes PA (2004) Fission yeast Cdc37 is required for multiple cell cycle functions. Mol Genet Genomics 271(1):82–90

    Article  PubMed  CAS  Google Scholar 

  • Williams P, Keshavarz-Moore E, Dunnill P (1996a) Production of cadmium sulphide microcrystallites in batch cultivation by Schizosaccharomyces pombe. J Biotechnol 48(3):259–267

    Article  PubMed  CAS  Google Scholar 

  • Williams P, KeshavarzMoore E, Dunnill P (1996b) Efficient production of microbially synthesized cadmium sulfide quantum semiconductor crystallites. Enzyme Microb Technol 19(3):208–213

    Article  CAS  Google Scholar 

  • Williams P, Keshavarz-Moore E, Dunnill P (2002) Schizosaccharomyces pombe fed-batch culture in the presence of cadmium for the production of cadmium sulphide quantum semiconductor dots. Enzyme Microb Technol 30(3):354–362

    Article  CAS  Google Scholar 

  • Wood V et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    Article  PubMed  CAS  Google Scholar 

  • Wünschmann J, Beck A, Meyer L, Letzel T, Grill E, Lendzian KJ (2007) Phytochelatins are synthesized by two vacuolar serine carboxypeptidases in Saccharomyces cerevisiae. FEBS Lett 581(8):1681–1687

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Maeda K, Nagahama T, Banno I, Lachance MA (1992) The phylogenetic relationships of the genus Sporopachydermia Rodriguez de Miranda (Saccharomycetaceae) based on the partial sequences of 18 S and 26 S ribosomal RNAs. J Gen Appl Microbiol 38:179–183

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants – a review. Gene 179(1):21–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Prof. Dr. Ursula Obst, Dr. Gerald Brenner-Weiss, Dipl.-Ing. Frank Kirschhöfer from Institute for Functional Interfaces, Dr. Patrick Kölsch and Silvia Andraschko from Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Germany, for their support, suggestions and immeasurable proficiency in conducting the analytical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Krumov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krumov, N., Posten, C. (2011). Development of a Process Chain for Nanoparticles Production by Yeasts. In: Rai, M., Duran, N. (eds) Metal Nanoparticles in Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18312-6_9

Download citation

Publish with us

Policies and ethics