Skip to main content

Zusammenfassung

In den vorangegangenen Kapiteln waren Aerosole und Aerosolteilchen schon mehrfach zur Sprache gekommen: Im 1. Kapitel war auf die Definition, die Anzahldichte und die Größenverteilung atmosphärischer Aerosole und auf einige Grundlagen der Aerosoloptik eingegangen worden. Im 5. Kapitel hatten wir die Rolle der Aerosole bei der Kondensation angesprochen und die Ausscheidung der Partikel durch den Niederschlag behandelt. Im 6. Kapitel war die Thermophorese als aerosoldynamischer Effekt erwähnt worden. Im 7. Kapitel kam noch die Diskussion der trockenen Deposition von Aerosolen hinzu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Andreae MO, Hegg DA, Baltensberger U (2009) Sources and nature of atmospheric aerosols. In: Levin Z, Cotton WR (eds) Aerosol Pollution Impact on Precipitation, a Scientific Review. Springer, Berlin-Heidelberg

    Google Scholar 

  • Angell JK, Korshover J (1985) Surface temperature changes following six major volcanic episodes between 1780 and 1980. J Clim Appl Meteorol 24:937–951

    Article  Google Scholar 

  • Barnard WR, Andreae MO, Watkins WE, Bingemer H, Georgii HW (1982) The flux of dimethylsulfide from the oceans to the atmosphere. J Geophys Res 87:8787–8793

    Article  CAS  Google Scholar 

  • Bauer H, Kasper-Giebl A, Loflund M, Giebl H, Hitzenberger R, Zibuschka F, Puxbaum H (2002) The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos Res 64(1–4), September–October 2002:109–119. doi:10.1016/S0169-8095(02)00084-4

    Article  Google Scholar 

  • Berresheim H, Jaeschke W (1982) Sulfur emissions from volcanoes. In: Georgii HW, Jaeschke W (eds) Chemistry of the Unpolluted and Polluted Troposphere. Reidel, Dordrecht, pp 325–337

    Chapter  Google Scholar 

  • Boulaud D, Madelaine G, Vigla D, Bricard J (1977) Experimental study on the nucleation of water vapor sulfuric acid binary systems. J Chem Phys 66:4854–4860

    Article  CAS  Google Scholar 

  • Bower KN, Choularton TW (1993) Cloud processing of the cloud condensation nucleus spectrum and its climatological consequences. Quart J R Meteorol Soc 119, 512:655–679

    Article  Google Scholar 

  • Castleman AN, Munkelwitz HR, Manowitz B (1974) Isotopic studies of the sulfur component of the stratospheric aerosol layer. Tellus 26:222–234

    Article  CAS  Google Scholar 

  • Chagnon CW, Junge CE (1961) The vertical distribution of sub-micron particles in the stratosphere. J Meteorol 18:746–752

    Article  Google Scholar 

  • Charlson RJ, Heintzenberg J (eds) (1995) Aerosol Forcing of Climate. Wiley, Chichester

    Google Scholar 

  • Charlson RJ, Langner J, Rodhe H, Leovy CB, Warren SG (1991) Pertubation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43 AB:152–163

    Google Scholar 

  • Charney JG (1947) The dynamics of long waves in a baroclinic westerly current. J Meteorol 4:135–163

    Article  Google Scholar 

  • Deshler T (2008) A review of global stratospheric aerosol: Measurements, importance, life cycle, and local stratospheric aerosol. Atmos Res 90(2–4), Proceedings of the 17th International Conference on Nucleation and Atmospheric Aerosols – ICNAA07, November–December 2008:223–232. doi:10.1016/j.atmosres.2008.03.016

    Google Scholar 

  • Dubovik O, Lapyonok T, Kaufman YJ, Chin M, Ginoux P, Kahn RA, Sinyuk A (2008) Retrieving global aerosol sources from satellites using inverse modeling. Atmos Chem Phys 8:209–250. doi:10.5194/acp-8-209-2008

    Article  CAS  Google Scholar 

  • Dusek U, Frank GP, Hildebrandt L et al (2006) Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312(5778):1375–1378. doi:10.1126/science.1125261

    Article  CAS  Google Scholar 

  • Dutton EG, Christy JR (1992) Solar radiative forcing at selected locations and evidence for global lower tropospheric cooling following the eruptions of the El Chichn and Pinatubo. Geophys Res Lett 19:2313–2316

    Article  Google Scholar 

  • Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588

    Article  CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Fuchs NA (1964) The Mechanics of Aerosols. Pergamon, Oxford

    Google Scholar 

  • Georgii HW, Lenhard U (1978) Contribution to the atmospheric NH3 budget. Pure Appl Geophys 116:385–391

    Article  CAS  Google Scholar 

  • Gillette DA (1978) A wind tunnel simulation of the erosion of soil: effects of soil texture, sandblasting, wind speed and soil condition on dust production. Atmos Environ 12:1735–1743

    Article  Google Scholar 

  • Gillette DA, Adams J, Endo C, Smith D (1980) Threshold velocities for input of soil particles into the air by desert soils. J Geophys Res 85:5621–5630

    Article  Google Scholar 

  • Hähnel G (1976) The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Adv Geophys 19:73–188

    Article  Google Scholar 

  • Hammer CU, Clausen HB, Dansgaard W (1980) Greenland ice-sheet evidence of post-glacial volcanism and its climatic impact. Nature (London) 288:230–235

    Article  Google Scholar 

  • Hansen J, Lacis A, Ruedy R, Sato M (1992) Potential climate impact of Mount Pinatubo eruption. Geophys Res Lett 19:215–218

    Article  Google Scholar 

  • Hansen JE, Wei-Chyung Wang, Lacis AA (1978) Mount Agung eruption provides test of global climatic pertubations. Science 199:1065–1068

    Article  CAS  Google Scholar 

  • Hidy GM, Brock JR (1970) The Dynamics of Aerocolloidal Systems. Pergamon, Oxford

    Google Scholar 

  • Hinze JO (1975) Turbulence, 2nd edn. MacGraw-Hill, New York, NY

    Google Scholar 

  • Hofmann DJ, Barnes J, O'Neill M, Trudeau M, Neely R (2009) Increase in background stratospheric aerosol observed with lidar at Mauna Loa Observatory and Boulder, Colorado. Geophys Res Lett 36:L15808. doi:10.1029/2009GL039008

    Google Scholar 

  • Hofmann DJ (1987) Perturbations of the global atmosphere associated with the El Chichon volcanic eruption of 1982. Rev Geophys 25:743–759

    Article  Google Scholar 

  • Hofmann DJ (1990) Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years. Science 248:996–1000

    Article  CAS  Google Scholar 

  • Hofmann DJ, Rosen JM (1983) Sulfuric acid droplet formation and growth in the stratosphere after the 1982 eruption of El Chichn. Science 222:325–327

    Article  CAS  Google Scholar 

  • Hofmann DJ, Rosen JM, Peppin TJ, Pinnick RG (1975) Stratospheric aerosol measurements. I: time variations at Northern midlatitudes. J Atmos Sci 32:1446–1456

    Article  Google Scholar 

  • http://www.helmholtz.de/fileadmin/user_upload/aktuelles/Schwerpunkt-Thema/Eyjafjallajoekull/33_Jahre_Lidarmessung_KIT.PDF

  • Jaenicke R (1978) Über die Dynamik atmosphärischer Aitkenteilchen. Ber Bunsenges Phys Chem 82:1198–1202

    Article  CAS  Google Scholar 

  • Junge CE (1961) Vertical profiles of condensation nuclei in the stratosphere. J Meterol 18:501–509

    Article  Google Scholar 

  • Junge CE (1963) Air Chemistry and Radioactivity. Academic Press, New York, NY

    Google Scholar 

  • Kanakidou M, Seinfeld JH, Pandis SN et al (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123. doi:10.5194/acp-5-1053-2005

    Article  CAS  Google Scholar 

  • Käselau KH, Fabian P, Röhrs H (1974) Measurements of aerosol concentration up to a height of 27 km. Pure Appl Geophys 112:877–885

    Article  Google Scholar 

  • Kaufman YJ, Boucher O, Tanré D, Chin M, Remer LA, Takemura T (2005), Aerosol anthropogenic component estimated from satellite data. Geophys Res Lett 32:L17804. doi:10.1029/2005GL023125

    Google Scholar 

  • Keith CH, Arons AB (1954) The growth of sea-salt particles by condensation of atmospheric water vapour. J Meteorol 11:173–184

    Article  Google Scholar 

  • Kerkweg A, Sander R, Tost H, Jöckel P, Lelieveld J (2007) Technical note: simulation of detailed aerosol chemistry on the global scale using MECCA-AERO. Atmos Chem Phys 7:2973–2985. doi:10.5194/acp-7-2973-2007

    Article  CAS  Google Scholar 

  • Ketserides G, Jaenicke R (1977) Organische Beimengungen in atmosphärischer Reinluft: Ein Beitrag zur Budget-Abschätzung. In: Aurand K et al. (Hrsg) Organische Verunreinigungen in der Umwelt. Schmidt, Berlin, pp 379–390

    Google Scholar 

  • Kinne S et al (2003) Monthly averages of aerosol properties: a global comparison among models, satellite data, and AERONET ground data. J Geophys Res 108:4634. doi:10.1029/2001JD001253

    Article  Google Scholar 

  • Kinne S, Schulz M, Textor C et al (2006) An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834. doi:10.5194/acp-6-1815-2006

    Article  CAS  Google Scholar 

  • Krämer M, Beltz N, Schell D, Schütz L, Sprengard-Eichel C, Wurzler S (2000) Cloud processing of continental aerosol particles: experimental investigations for different drop sizes. J Geophys Res105(D9):11739–11752

    Article  Google Scholar 

  • Kulmala M, Vehkamaki H, Petaja T, Dal Maso M, Lauri A, Kerminen VM, Birmili W, McMurry P (2004) Formation and growth rates of ultrafine atmospheric particles: a review of observations. J Aerosol Sci 35:143–176

    Article  CAS  Google Scholar 

  • Lacis AA, Hansen J, Sato M (1992) Climate forcing by stratospheric aerosols. Geophys Res Lett 19:1607–1610

    Article  Google Scholar 

  • Lamb HH (1972) Climate, Present, Past, and Future, Vol. 1. Methuen, London

    Google Scholar 

  • Lazrus AL, Gandrud BW (1974) Stratospheric sulfate aerosol. J Geophys Res 79:3424–3431

    Article  CAS  Google Scholar 

  • Levin Z, Ganor E, Gladstein V (1996) The effects of desert particles coated with sulfate on rainformation in the Eastern Mediterranean. J Appl Meteorol 35:1511–1523

    Article  Google Scholar 

  • Levin Z, Cotton WR (2009) Aerosol Pollution Impact on Precipitation, a Scientific Review. Springer, Berlin und Heidelberg

    Book  Google Scholar 

  • Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737. doi:10.5194/acp-5-715-2005

    Article  CAS  Google Scholar 

  • Mäkelä JM, Hoffmann T, Holzke C, Väkevä M, Suni T, Mattila T, Aalto PP, Tapper U, Kauppinen EI, O'Dowd CD (2002) Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts. J Geophys Res 107(D19):8110. doi:10.1029/2001JD000580

    Article  Google Scholar 

  • Mäkelä JM, Aalto MP, Jokinen V, Pohja T, Nissinen A, Palmroth S, Markkanen T, Seitsonen K, Lihavainen KH, Kulmala M (1997), Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys Res Lett 24(10):1219–1222

    Article  Google Scholar 

  • Martin ST, Andreae MO, Artaxo P et al (2010) Sources and properties of Amazonian aerosol particles. Rev Geophys 48:RG2002. doi:10.1029/2008RG000280

    Google Scholar 

  • Mason BJ (1971) The Physics of Clouds. Clarendon, Oxford

    Google Scholar 

  • McFiggans G, Bale CSE, Ball SM et al (1996) The effects of desert particles coated with sulfate on rain formation in the Eastern Mediterranean. J Appl Meteorol 35:1511–1523

    Article  Google Scholar 

  • Middleton P (1980) A re-examination of atmospheric sulfuric acid aerosol formation and growth. J Aerosol Sci 11:411–414

    Article  CAS  Google Scholar 

  • Middleton P, Kiang CS (1978) A kinetic aerosol model for the formation and growth of seondary sulfuric acid particles. J Aerosol Sci 9:359–385

    Article  CAS  Google Scholar 

  • Millikan RA (1923) The general law of fall of a small spherical body through a gas, and its bearing upon the nature of molecular reflection from surface. Phys Rev 22:1–23

    Article  Google Scholar 

  • Newell RE, Weare BC (1976) Factors governing tropospheric mean temperature. Science 194:1413–1414

    Article  CAS  Google Scholar 

  • Penner JE (1995) Carbonaceous aerosols influencing atmospheric radiation: black and organic carbon. In: Charlson RJ, Heintzenberg J (eds) Aerosol Forcing of Climate. Wiley, Chichester, pp 91–108

    Google Scholar 

  • Penner JE, Andreae M, Annegarn H et al (2001) Aerosols, their direct and indirect effects. In: Climate Change 2001.Working Group I: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Peterson JT, Junge CE (1971) Sources of particulate matter in the atmosphere. In: Matthews WH et al. (eds) Mans Impact on Climate. MIT Press, Cambridge, MA, pp 310–320

    Google Scholar 

  • Petters MD, Kreidenweis SM (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos Chem Phys 7:1961–1971. doi:10.5194/acp-7-1961-2007

    Article  CAS  Google Scholar 

  • Pollack JB, Toon OB, Sagan C, Summers A, Baldwin B, Van Camp W (1976) Volcanic explosions and climatic change: a theoretical assessment. J Geophys Res 81:1071–1083

    Article  CAS  Google Scholar 

  • Rahn KA (1976) The chemical composition of atmospheric aerosols. Technical Report, Graduate School of Oceangraphy, University of Rhode Island, Kingston

    Google Scholar 

  • Robinson E, Robbins RC (1971) Emissions, concentrations and fate of particulate atmospheric pollutants. Final Report, SRI Project 8507, Am Petrol Inst

    Google Scholar 

  • Roedel W (1980) On the climate-radiocarbon relationship: nitric oxide and ozone as connecting links between radiation and earth’s surface temperatures. Radiocarbon 22:250–259

    CAS  Google Scholar 

  • Roedel W (1982) Thermal diffusion of aerosol particles: Lagrangian autocorrelation as an alternative to Langevin’s equation. J Aerosol Sci 13:597–601

    Article  Google Scholar 

  • Rosen JM, Hofmann DJ, Laby J (1975) Stratospheric aerosol measurements II: the world wide distribution. J Atmos Sci 32:1457–1462

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric Chemistry and Physics, from Air Pollution to Climate Change, 2nd edn. Wiley, New York, NY, p 1232

    Google Scholar 

  • Soden BJ, Wetherald RT, Stenchikov GL, Robock A (2002) Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296(5568):727–730. doi:10.1126/science.296.5568.727

    Article  CAS  Google Scholar 

  • Stern DI (2006) Reversal of the trend in global anthropogenic sulfur emissions. Global Environ Change 16(2):207–220. doi:10.1016/j.gloenvcha.2006.01.001

    Article  Google Scholar 

  • Textor C, Schulz M, Guibert S et al (2006) Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos Chem Phys 6:1777–1813. doi:10.5194/acp-6-1777-2006

    Article  CAS  Google Scholar 

  • Trickl T, Giehl H, Jäger H, Fromm M (2010) 33 Years of stratospheric aerosol measurements at Garmisch-Partenkirchen (1976–2010) http://www.helmholtz.de/fileadmin/user_upload/aktuelles/Schwerpunkt-Thema/Eyjafjallajoekull/33_Jahre_Lidarmessung_KIT.PDF

  • Turco RP, Whitten RC, Toon OB, Pollack JB, Hamill P (1980) OCS, stratospheric aerosols and climate. Nature (London) 283:283–286

    Article  CAS  Google Scholar 

  • Turekian KK (1971) Geochemical Distribution of Elements. McGraw-Hill Encyclopedia of Science and Technology, Vol. 4. McGraw-Hill, London, pp 627–630

    Google Scholar 

  • Twomey SA (1997) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152

    Article  Google Scholar 

  • Walter A, Denhard M, Schönwiese CD (1998) Simulation of global and hemispheric temperature variations and signal detection studies using neural networks. Meteorol Z, NF 7:171–180

    Google Scholar 

  • Whitehead JD (2010) Iodine-mediated coastal particle formation: an overview of the Reactive halogens in the marine boundary layer (RHaMBLe) Roscoff coastal study. Atmos Chem Phys 10:2975–2999. doi:10.5194/acp-10-2975-2010

    Article  Google Scholar 

  • Winkler P (1975) Chemical analysis of Aitken particles (<0,2 μm) over the Atlantic ocean. Geophys Res Lett 2:45–48

    Article  CAS  Google Scholar 

  • Wurzler S, Reisin TG, Levin Z (2000) Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions. J Geophys Res 105(D4):4501–4512

    Article  CAS  Google Scholar 

  • Yu H, Kaufman YJ, Chin M et al (2006) A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos Chem Phys 6:613–666, doi:10.5194/acp-6-613-2006

    Article  CAS  Google Scholar 

  • Zebel G (1966) Coagulation of aerosols. In: Davies CN (ed) Aerosol Science. Academic Press, London, pp 31–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Roedel .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roedel, W., Wagner, T. (2011). Aerosole. In: Physik unserer Umwelt: Die Atmosphäre. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15729-5_9

Download citation

Publish with us

Policies and ethics