Skip to main content

The Mammalian Pyramidal Neuron: Development, Structure, and Function

  • Chapter
  • First Online:
The Human Brain
  • 2448 Accesses

Abstract

In all mammalian species, the cerebral cortex (neocortex) is characterized and distinguished by the abundance of pyramidal cells, representing roughly 75% of its neurons. This neuronal type represents a mammalian innovation and is characterized by unique developmental, morphological, and functional features (Marín-Padilla 1971, 1992). It also represents the essential functional outlet of the neocortex, such that the remaining cortical neurons contribute, directly and/or indirectly, to its functional role. The prenatal development and functional maturation of pyramidal neurons is a sequential, ascending, and stratified process (Marín-Padilla 1992, 1998). To comprehend why the mammalian neocortex is stratified (laminated), the developmental, structural, and functional features of the pyramidal neuron must be first clearly understood. The present chapter proposes that the number of pyramidal cell’s functional strata (laminations) established in the cerebral cortex varies among different mammalian species, increases in the course of phylogeny, and reflects the animal motor abilities and capabilities. The essential developmental, morphological, and functional features of this uniquely mammalian neuron are explored in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrellano JI, Benavides-Piccione R, De Felipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphology. Frontiers Neurosci 1:131–143

    Article  Google Scholar 

  • Cajal SR (1891) Sur la structure de l’ecorce cérébrale de quelques mammiferes. Cellule 7:124–176

    Google Scholar 

  • Cajal SR (1894) La fine structure des centres des nerveoux. The Croonian Lecture. Proc R Soc Lond 55:443–468

    Google Scholar 

  • Cajal SR (1896) Les spines collaterals des celulas du cerveux colorées au blue de méthyléne. Revista Trimestrar Micrográfica 1:5–19

    Google Scholar 

  • Cajal SR (1911) Histologie du systéme nerveux de l’homme et des vertebrés. Maloine, Paris (reprinted in Madrid, 1952)

    Google Scholar 

  • Cajal SR (1923). Recuerdos de mi Vida. Juan Pueyo, Madrid

    Google Scholar 

  • Cajal SR (1933) ¿Neuronismo o Reticularismo? Las pruebas objetivas de la unidad anatómica de las células nerviosas. Madrid (Reprinted by the Cajal Institute in 1952)

    Google Scholar 

  • De Felipe J (2006) Brain plasticity and mental processes: Cajal again. Neurosciences 7:811–817

    Google Scholar 

  • Fairen A, De Felipe J Regidor J (1984). Nompyramidal neurons: General Account, In Peters A, Jones GE (eds) Cerebral Cortex, Vol 1. Plenum Press, New York, pp 201–245

    Google Scholar 

  • Gray EG (1959) Electron microscopy of synaptic contacts on dendritic spines of the cerebral cortex. Nature 183:1592–1593

    Article  PubMed  CAS  Google Scholar 

  • Jones GE, Hendry SH (1984). The Basket Cell, In Peters A, Jones GE (eds) Cerebral Cortex, vol 1. Plenum Press, New York, pp 309–334

    Chapter  Google Scholar 

  • Marín-Padilla M (1967) Number and distribution of the apical dendritic spines of the layer V pyramidal cell in man. J Comp Neurol 131:475–490

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1968) Cortical axo-spinodendritic synapses in man. Brain Res 8:196–200

    Article  PubMed  Google Scholar 

  • Marín-Padilla M, Stibitz GR (1968) Distribution of the apical dendritic spines of the layer V pyramidal neurons of the hamster neocortex. Brain Res 11:580–592

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex. Brain Res 14:633–646

    Article  PubMed  Google Scholar 

  • Marín-Padilla M, Stibitz GR, Almy CP, Brown HN (1969) Spine distribution of the layer V pyramidal neurons in man. A cortical model. Brain Res 12:493–496

    Article  PubMed  Google Scholar 

  • Marín-Padilla M, Stibitz GR, Almy CP, Brown HN (1969). Spine distribution of layer V pyramidal cells in man. A cortical model. Brain Res 12:493–496

    Article  Google Scholar 

  • Marín-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex. A Golgi study, II. The basket-pyramidal system. Brain Res 23:185–191

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1971). Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. Part I. Z Anat Entzwickl-Gesch 134:117–145

    Article  Google Scholar 

  • Marín-Padilla M (1972) Structural abnormalities of the cerebral cortex in human chromosomal aberrations. A Golgi study. Brain Res 44:625–629

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1974) Structural organization of the cerebral cortex (motor area) in human chromosomal aberrations. A Golgi study. I. D1 (13-15) trisomy. Patau syndrome. Brain Res 66:375–391

    Article  Google Scholar 

  • Marín-Padilla M, Stibitz JR (1974) Three-dimensional of the baskets of the human motor cortex. Brain Res 70:511–514

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1976) Pyramidal cell abnormalities in the motor cortex of a child with Down’s syndrome. A Golgi study. J Comp Neurol 167:63–82

    Article  PubMed  Google Scholar 

  • Marín-Padilla M, Marín-Padilla T (1982) Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. Anat Embryol 164:161–206

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1987) The chandelier cell of the human visual cortex. J Comp Neurol 265:61–70

    Article  Google Scholar 

  • Marín-Padilla M (1990) The pyramidal cell and its local-circuit interneurons: a hypothetical unit of the mammalian cerebral cortex. J Cognitive Neurosci 2:89–105

    Article  Google Scholar 

  • Marín-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonic: a unifying theory. J Comp Neurol 321:223–240

    Article  PubMed  Google Scholar 

  • Marín-Padilla M (1998) The Cajal–Retzius cell and the development of the neocortex. Trends Neurosci (TINS) 21:64–71

    Article  Google Scholar 

  • Marín-Padilla M (1999) Developmental neuropathology and impact of perinatal brain damage. III: Gray matter lesions of the neocortex. J Neuropath Exp Neurol 58:407–429

    Article  PubMed  Google Scholar 

  • Marín-Padilla M, Parisi JE, Armstrong DL, Sargent SK, Kaplan JA (2002). Shaken infant syndrome: Developmental neuropathology, progressive cortical dysplasia and epilepsy. Acta Neuropathologica 103:321–332

    Article  PubMed  Google Scholar 

  • Marín-Padilla M, Tsai R, King MA, Roper SN (2003) Altered corticogenesis and neuronal morphology in irradiation-induced cortical dysplasia and epilepsy. A Golgi study. J Neuropath Exp Neurol 62:1129–1143

    PubMed  Google Scholar 

  • Purpura D (1974) Dendritic spines ‘dysgenesis’ and mental retardation. Science 186:1126–1128

    Article  PubMed  CAS  Google Scholar 

  • Purpura DP (1975) Dendritic differentiation in human cerebral cortex: normal and aberrant developmental patterns. In: Kreutzberg GW (ed) Physiology and pathology of dendrites. Advances in neurology, vol 12. Raven, New York, pp 91–116

    Google Scholar 

  • Peters A (1984) Bipolar cells. In: Peters A, Jones GE (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 381–405

    Google Scholar 

  • Peters A, Saint Marie RL (1984) Smooth and sparsely spinous nonpyramidal cells forming local axonal plexuses. In: Peters A, Jones GE (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 419–442

    Google Scholar 

  • Somogyi P, Cowey A (1984) Double bouquet cells. In: Peters A, Jones GE (eds) Cerebral cortex, vol 1. Plenum Press, New York, pp 337–358

    Google Scholar 

  • Shepherd G (1996) The dendritic spine: a multifunctional integrative unit. J Neurophysiol 75:2197–2210

    PubMed  CAS  Google Scholar 

  • Valverde F (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3:337–352

    Article  PubMed  CAS  Google Scholar 

  • Weiler N, Wood L, Yu J, Solla SA, Shepherd GMG (2008) Top-down laminar organization of the excitatory network in motor cortex. Nat Neurosci 11:360–366

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Marín-Padilla .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Marín-Padilla, M. (2011). The Mammalian Pyramidal Neuron: Development, Structure, and Function. In: The Human Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14724-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14724-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14723-4

  • Online ISBN: 978-3-642-14724-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics