Skip to main content
Log in

Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex

A Golgi study

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The composition and structural organization of layer I of the human motor cortex were studied throughout the course of prenatal cortical neurogenesis with the rapid Golgi method. The components of layer I are six. The specific afferents of layer I (primitive corticipetal fibers) and the Cajal-Retzius neurons are its essential intrinsic components, while the apical dendritic bouquets of all pyramidal neurons and the axonic terminations of all Martinotti neurons are its essential extrinsic elements. These four components are recognized throughout the entire course of prenatal cortical neurogenesis. The small neurons and terminals from afferent systems of lower cortical strata, which are incorporated into layer I late in cortical neurogenesis, represent its non-essential components. The specific afferents of layer I are the first corticipetal fibers to arrive at the developing telencephalic vesicle marking the beginning of cortical neurogenesis. These primitive fibers extend throughout the surface of the cerebral vesicle establishing an external white matter. They are considered to be the stimulus for the development and maturation of the Cajal-Retzius neurons. Together they form a primitive cortical organization, the primordial plexiform layer, which precedes the appearance of the cortical plate and is considered to be common to and shared by amphibians, reptiles and mammals including man. Layer I evolves from this primordial cortical lamination. The Cajal-Retzius neurons are all characterized by a single descending axonic process which becomes a long horizontal (tangential) fiber in the lower half of layer I. Although the body and main dendrites of these neurons are only found at strategic and old cortical regions (e.g. the motor, acoustic and visual areas) their long horizontal axons extend, anteroposteriorly, throughout the entire surface of the cerebral cortex and establish synaptic connections with the apical dendrites of all pyramidal neurons regardless of location, cortical depth or functional role.

In the course of cortical development, all developing pyramidal neurons ascend through the cortical plate in order to establish primary synaptic contacts with layer I. Only then, do they become ready to be displaced downward by the arrival of the next set of migrating neuroblasts. All pyramidal neurons of the cerebral cortex are actually suspended from layer I anchored to it by their apical dendritic bouquets. The need for all pyramidal neurons to reach and establish original synaptic connections with layer I could explain the remarkable ‘inside-out’ formation of the cortical plate. This fact could also explain the characteristic shape of these neurons, as well as their abundance, structural uniformity and universal radial orientation to layer I. The functional role of layer I seems to be the spreading of the same kind of primitive information to all pyramidal neurons of the cerebral cortex whether they be motor, sensory, acoustic, visual or associational in nature, or whether they be large or small.

The observations presented in this study further corroborate the concept of the dual origin of the mammalian cerebral cortex. The study emphasizes the important role played by layer I in the overall organization of the cerebral cortex. It proposes that in the course of cortical neurogenesis all future pyramidal neurons are attracted to layer I where they establish original synaptic connections and all receive from it the same kind of primitive information needed for their maturation. There seems to be no obvious reason to believe that the original synaptic contacts established between all pyramidal neurons and layer I disappear in the course of cortical neurogenesis. On the contrary, the progressive growth of the apical dendritic bouquets within layer I seems to indicate that they actually expand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adinolfi AM (1972) Morphogenesis of synaptic function in layers I and II of the somatic sensory cortex. Exp Neurol 34:372–382

    Google Scholar 

  • Adrian ED (1936) The spread of activity in the cerebral cortex J Physiol (London) 88:127–161

    Google Scholar 

  • Amaraz OG, Sinnamon HM (1977) The locus coeruleus: Neurobiology of a central noradrenargic nucleus, Progress in Neurobiology 9:147–196

    Google Scholar 

  • Armstrong-James M, Johnson R (1970) Quantitative studies of postnatal changes in synapses in rat superficial motor cerebral cortex, Z Zellforsch 110:559–568

    Google Scholar 

  • Åström KE (1967) On the early development o the isocortex in fetal sheep, In: Bernhard CG and Schadé JP (Eds) Developmental neurology, Progress in Brain Research, Vol 26, Elsevier, Amsterdam pp 1–59

    Google Scholar 

  • Baron M (1976) Organizacion funcional de la capa I de la corteza cerebral. Cellulas de Cajal. Doctoral Thesis, An. Ins. Farm. Esp 22:23–240

    Google Scholar 

  • Baron M, Gallego A (1971) Cajal cells of the rabbit cerebral cortex, Experienctia 27:430–432

    Google Scholar 

  • Bartelmez GW, Dekaban AS (1962) The early development of the human embryo, Contr Embryol Carnegie Inst 37:13–32

    Google Scholar 

  • Blinkov SM, Glezer II (1968) The human brain in figures and tables. Basic Books Inc Plenum Press, New York, pp 171–183

    Google Scholar 

  • Boulder Committee (1970) Embryonic vertebrate central nervous system terminology, Anat Rec 166:257–262

    Google Scholar 

  • Braak H (1980) Architectonics of the human telencephalic cortex. Springer Verlag Heidelberg, New York, pp 66–94

    Google Scholar 

  • Bradford R, Parnavelas JG, Lieberman AR (1978) Neurons in layer I of the developing occipital cortex of the rat, J Comp Neurol 176:121–132

    Google Scholar 

  • Braitenberg V (1978) Cortical architectonics general and areal. In: Brazier MAB and Petsche H (Eds) Architectonics of the cerebral cortex Raven Press, New York, pp 443–465

    Google Scholar 

  • Brodmann K (1910) Feinere Anatomie des Großhirns. Handbuch der Neurologie, Lewandowsky (Ed) J Springer Publ, Berlin Vol 1, pp 54–97

    Google Scholar 

  • Brun A (1965) The subpial granular layer of fetal cerebral cortex in man. Its ontogeny and significance of congenital cortical malformations, Acta Pathol Microbiol Scand Suppl 179:1–98

    Google Scholar 

  • Cajal SR (1890) Sobre la existencia de cellulas nerviosas especiales de la primera capa de las circunvoluciones cerebrales, Gaceta Medica Catalana 15 Diciembre:225–228

  • Cajal SR (1891) Sur la structure de l'écorce cerebrale de quelques mammiferes, La Céllule 7:125–176

    Google Scholar 

  • Cajal SR (1896) Le blue de methyléne dans les centres nerveux. Rev Trim Microgr 1:21–82

    Google Scholar 

  • Cajal SR (1897) Las cellulas de cilindro-eje corto de la capa molecular del cerebro, Rev Trim Microgr 2:104–127

    Google Scholar 

  • Cajal SR (1900) Estudios sobre la corteza cerebral humana: Estructura de la corteza acustica, Rev Trim Microgr 5:129–183

    Google Scholar 

  • Cajal SR (1911) Histologie du système nerveux de l'homme et des vertébrés (Reprinted Consejo Superior Investigaciones Cientificas, Madrid, 1952), Maloine, Paris Vol II, pp 519–646

    Google Scholar 

  • Chow KL, Leiman A (1970) The structural and functional organization of the neocortex, Neurosciences Res Prog Bull 8:157–220

    Google Scholar 

  • Colonnier M (1968) Synaptic patterns on different cells types in the different laminae of the cat visual cortex, Brain Res 9:268–287

    Google Scholar 

  • Conel JL (1941) The postnatal development of the human cerebral cortex. The cortex of a one-month infant, Hardvard Uni Press, Cambridge, Mass. Vol II, pp 97–128

    Google Scholar 

  • Conel JL (1947) The postnatal development of the human cerebral cortex. The cortex of a three-month infant, Hardvard Uni Press, Cambridge, Mass. Vol III, pp 132–148

    Google Scholar 

  • Conel JL (1951) The postnatal development of the human cerebral cortex. The cortex of a six-month infant, Harvard Uni Press, Cambridge, Mass. Vol IV, pp 158–177

    Google Scholar 

  • Derer P (1974) Histogenèse du néocortex du rat albinos durant la période foetale et neonatale, J für Hirnforsch 15:49–74

    Google Scholar 

  • Duckett S, Pearse AGE (1968) The cells of Cajal-Retzius in the developing human brain, J Anat (London) 102:183–187

    Google Scholar 

  • Eccles JC (1979) The human mystery. The Gifford Lectures, Springer Inter, Berlin, New York, pp 158–198

    Google Scholar 

  • Fleischhauer K, Laube A (1977) A pattern formed by preferential orientation of tangential fibers in layer I of the rabbit's cerebral cortex, Anat Embryol 151:233–240

    Google Scholar 

  • Fox MW, Inman O (1966) Persistence of the Retzius-Cajal cells in developing dog brain, Brain Res 3:192–194

    Google Scholar 

  • Gallego A (1972) Conexiones centrales entre neuronas. Cellulas moduladoras de las capas plexiformes, Arch Fac Med 21:69–116

    Google Scholar 

  • Godina G (1951) Istogenesi e differenziazione dei neuroni e degli elementi gliali della corteccia cerebrale, Zellforsch 36:401–435

    Google Scholar 

  • Hamilton WJ, Boyd JD, Mossman HW (1972) Human embryology, Heffer and Son Ltd, Cambridge, England, pp 481–485

    Google Scholar 

  • Hendry SHC, Jones EG (1981) Sizes and distribution of intrinsic neurons incorporating tritiated gaba in monkey sensory-motor cortex, J Neurosciences 1:390–408

    Google Scholar 

  • Hines M (1922) Studies in the growth and differentiation of the telencephalon in man. The fissura hippocampi, J Comp Neurol 34:73–171

    Google Scholar 

  • His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate, Hirszel, Leipzig, pp 15–20

    Google Scholar 

  • Jones EG (1975) Lamination and differential distribution of thalamic afferent within the sensory-motor cortex in the squirrel monkey, J Comp Neurol 160:167–204

    Google Scholar 

  • Jones EG, Powell TPS (1970a) Electron microscopy of the somatic sensory cortex of the cat, Phil Trans Roy Soc London, B-Series, 257:13–21

    Google Scholar 

  • Jones EG, Powell TPS (1970b) An electron microscopic study of the laminar pattern and mode of terminations of afferent fibres pathways in the somatic sensory cortex of the cat, Phil Trans Roy Soc London, B-Series 257:45–62

    Google Scholar 

  • Kirsche W (1974) Zur vergleichenden funktionsbezogenen Morphologie der Hirnrinde der Wirbeltiere auf der Grundlage embryologischer und neurohistologischer Untersuchungen. Z Mikranat Forsch 88:21–51

    Google Scholar 

  • Koelliker A von (1896) Handbuch der Gewebelehre des Menschen, Vol 3, Engelman (Ed), Leipzig, pp 644–650

  • König N, Roch G, Marty R (1975) The onset of synaptogenesis in rat temporal cortex, Z Anat Entwickl-Gesch 148:73–87

    Google Scholar 

  • König N, Valat J, Fulcrand J, Marty R (1977) The time of origin of Cajal-Retzius cells in the rat temporal cortex. An autoradiographic study, Neurosciences letter 4:21–26

    Google Scholar 

  • Kostovic I, Rakic P (1980) Cytology and time of origin of interstitial neurons in the white matter in infant and adult monkey telencephalon, J Neurocytol 9:219–242

    Google Scholar 

  • Lapierre Y, Beaudet A, Demianczuk N, Descarries L (1973) Noradrenergic axon terminals in the cerebral cortex of rat. II Quantitative data revealed by light and electron microscope radioautography of the frontal cortex, Brain Res 63:175–182

    Google Scholar 

  • Larroche J-C (1981) The marginal layer in the neocortex of a seven week-old human embryo, Anat Embryol 162:301–312

    Google Scholar 

  • Larroche J-C, Privat A, Jardin L (1981) Some fine structures of the human fetal brain, In Minkowsky (Ed) Sam Levine International Symposium Paris, Karger, Basel, Switzerland, pp 350–358

    Google Scholar 

  • Lorente de Nó R (1922) La corteza cerebral del raton, Rev Trim Microgr 25:41–78

    Google Scholar 

  • Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. I The area entorhinalis, J Psychol Neurol 45:381–438

    Google Scholar 

  • Lorente de Nó R (1949) Cerebral cortex: Architecture, intracortical connections, In: Fulton JF (Ed) Physiology of the Nervous System, Oxford Uni Press, New York, pp 274–301

    Google Scholar 

  • Lund JS, Lund RD (1970) The termination of callosal fibers in the paravisual cortex of the rat, Brain Res 17:25–45

    Google Scholar 

  • Marin-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: A Golgi study. I The sequential development of the cortical layers, Brain Res 23:167–183

    Google Scholar 

  • Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica): A Golgi study. I The primordial neocortical organization. Z Anat Entwickl-Gesch 134:117–145

    Google Scholar 

  • Marin-Padilla M (1972) Prenatal ontogenetic history of the pricipal neurons of the neocortex of the cat (Felis domestica). A Golgi study. II Developmental differences and their significance, Z Anat Entwickl-Gesch 136:125–142

    Google Scholar 

  • Marin-Padilla M (1974) Structural organization of the cerebral cortex (motor area) in human chromosomal aberrations: I. D (13–15) trisomy, Patau syndrome, Brain Res 66:375–391

    Google Scholar 

  • Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate, Anat Embryol 152:109–126

    Google Scholar 

  • Marin-Padilla M, Stibitz GR, Almy CP and Brown HN (1969) Spine distribution of the layer V pyramidal cell in man: a cortical model, Brain Res 12:493–496

    Google Scholar 

  • Martinotti C (1890) Beitrag zum Studium der Hirnrinde und dem Centralursprung der Nerven, Internal Monatsschr Anat Physiol 7:69–90

    Google Scholar 

  • Marty R (1962) Developpement postnatal des résponses sensorieles du cortex cérèbrale chez le chat et la lapin, Arch Anat Micr Morphol Exp 51:126–264

    Google Scholar 

  • Meller K, Breipohl W, Glees P (1968a) The cytology of the developing molecular layer of mouse neocortex, Z Zellforsch 96:171–183

    Google Scholar 

  • Meller K, Breipohl W, Glees P (1968b) Synaptic organization of the molecular and the and the outer granular layer in the motor cortex in the white mouse during postnatal development. A Golgi and electron microscopical study, Z Zellforsch 92:217–231

    Google Scholar 

  • Molliver ME, Van der Loos H (1970) The ontogenesis of cortical circuitry: The spatial distribution of synapses in somesthetic cortex of new born dogs. Advances in Anatomy, Embryology and Cell Biology 42:7–53

    Google Scholar 

  • Molliver ME, Kostovic I, Van der Loos H (1973) The development of synapses in cerebral cortex of the human fetus, Brain Res 50:403–407

    Google Scholar 

  • Morrison JH, Grzanna R, Molliver ME, Coyle JT (1978) The distribution and orientation of noradrenargic fibers in the neocortex of the rat: an immunofluorescence study, J Comp Neurol 181:17–40

    Google Scholar 

  • Nañagas JC (1923) Anatomical studies on the motor cortex of Macacus rhesus, J Comp Neurol 35:67–96

    Google Scholar 

  • Novack CR, Purpura DP (1961) Postnatal ontogenesis of neurons in cat neocortex, J Comp Neurol 117:291–307

    Google Scholar 

  • Nobin A, Björklund A (1973) Topography of monoamine neuron system in the human brain a revealed in fetuses, Acta Physiol Scand Suppl 388:1–40

    Google Scholar 

  • Olson L, Boréus LO and Seiger Å (1973) Histochemical demonstration and maping of the hydroxytryptamine and cathecolamine containing neurons systems in the human fetal brain, Z Anat Entwickl-Gesch 139:259–282

    Google Scholar 

  • O'Rahilly R, Gardner E (1971) The timing and sequence of events in the development of the human nervous system during embryonic period proper, Z Anat Entwickl-Gesch 134:1–12

    Google Scholar 

  • O'Rahilly R, Gardner E (1977) The developmental anatomy and histology of the human central nervous system. In: Myrianthopoulos N (Ed) Vinken and Bruyn Handbook of Clinical Neurology, North Holland Publ, Amsterdam, Vol 30, pp 15–40

    Google Scholar 

  • Pappas GD, Purpura DP (1961) Fine structure of dendrites in the superficial neocortical neuropile, Exp Neurol 4:507–530

    Google Scholar 

  • Persson HE (1973) Development of somatosensory cortical functions, Acta Physiol Scand (suppl 394) 5–64

  • Peters A, Feldman M (1973) The cortical plate and molecular layer of the late rat fetus, Z Anat Entwickl-Gesch 141:3–37

    Google Scholar 

  • Pinto-Lord MC, Caviness VS (1979) Determination of cell shape and orientation. A comparative Golgi analysis of cell-axon interelationships in the developing neocortex of normal and Reeler mice, J Comp Neurol 187:49–70

    Google Scholar 

  • Poliakov GI (1961) Some results of research into the development of the neuronal structure of the cortical ends of the analyser in man, J Comp Neurol 117:197–212

    Google Scholar 

  • Poliakov GI (1974) Relations between some structural parameters of types and forms of neurons effecting different kinds of switches in the neocortex, J Hirnforsch 15:249–268

    Google Scholar 

  • Purpura DP (1975) Morphogenesis of visual cortex in the preterm infant, In: Brazier MAB (Ed), Growth and Development of the Brain, Raven Press, New York pp 33–49

    Google Scholar 

  • Purpura DP, Carmicheal MW, Housepian EM (1960) Physiological and anatomical studies of development of superficial axodendritic synaptic pathways in the neocortex, Exp Neurol 2:324–347

    Google Scholar 

  • Purpura DP, Shofer RJ, Housepian EM, Noback CR (1964) Comparative ontogenesis of structure-function relationships in cerebral and cerebellar cortex, In: Purpura DP and Shade JP (Eds) Growth and maturation of the brain. Progress in Brain Research, Elservier Publ, Amsterdam, Vol 4:219–221

    Google Scholar 

  • Rabinowicz TH (1964) The cerebral cortex of the premature infant of the 8th month, In: Purpura DP and Shadé JP (Eds), Growth and maturation of the brain Progress in Brain Research, Elservier, Amsterdam, Vol 4:39–92

    Google Scholar 

  • Raedler A, Sievers J (1976) Light and electron microscopical studies on specific cells of the marginal zone in the developing rat cerebral cortex. Anat Embryol 149:173–181

    Google Scholar 

  • Raedler E, Raedler A (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol 154:267–284

    Google Scholar 

  • Raedler E, Readler A, Feldhaus S (1980) Dynamical aspects of neocortical histogenesis in the rat. Anat Embryol 158:253–269

    Google Scholar 

  • Retzius G (1891) Über den Bau der Oberflächenschicht der Großhirnrinde beim Menschen und bei den Säugetieren, Verh Biol Vereins (Stockholm) 3:90–103

    Google Scholar 

  • Retzius G (1893) Die Cajalschen Zellen der Großhirnrinde beim Menschen und bei Säugetieren, Biol Unters 5:1–9

    Google Scholar 

  • Retzius G (1894) Weitere Beiträge zur Kenntnis der Cajalschen Zellen der Großhrinrinde des Menschen, Biol Unters 6:29–34

    Google Scholar 

  • Rickmann M, Chronwall, Wolff JR (1977) On the development of nonpyramidal neurons and axons outside the cortical plate: The early marginal zone as a pallial anlage, Anat Embryol 151:258–307

    Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origin and terminations of cortical connections of the occipital cortex of the rhesus monkey, Brain Res 179:3–20

    Google Scholar 

  • Sas E, Sanides F (1970) A comparative study of the Cajal foetal cells, Z Mikro-Anat Forsch 82:385–396

    Google Scholar 

  • Schlumpf M, Shoemaker WJ, Bloom FE (1977) The development of cathecholamines fibers in the prenatal cerebral cortex of the rat, Neurosci (abs) 3:118

    Google Scholar 

  • Schlump M, Shoemaker WJ, Bloom FE (1980) Innervation of embryonic rat cerebral cortex by catecholamine-containing fibers, J Comp Neurol 192:361–376

    Google Scholar 

  • Shkol'nik-Yarros E (1971) Neurons and interneuronal connections of the central nervous system, (English translation by Haigh B) Plenum Press, New York, pp 22, 31, 65, 141

    Google Scholar 

  • Sholl DA (1956) Organization of the cerebral cortex, Methuen and Co Publ, London, pp 15–30

    Google Scholar 

  • Shoukimas GM, Hinds JW (1978) The development of the cerebral cortex in the embryonic mouse: An electron microscopic serial section analysis, J Comp Neurol 179:795–830

    Google Scholar 

  • Sousa-Pinto A, Paula-Barbosa M, Carmo Matos M (1975) A Golgi and electron microscopical study of nerve cells in layer I of the cat auditory cortex, Brain Res 95:443–458

    Google Scholar 

  • Strick PL, Sterting P (1974) Synaptic terminations of afferent from ventro-lateral nucleus of the thalamus in the motor cortex. A light and electron microscope study, J Comp Neurol 153:77–106

    Google Scholar 

  • Sugita N (1971) Comparative studies on the growth of the cerebral cortex, J Comp Neurol 28:511–591

    Google Scholar 

  • Szentágothai J (1965) The use of degenerative method in the investigation of short neuronal connections, In: Singer M and Shadé JP (Eds), Degeneration patterns in the nervous system, Elsevier, Amsterdam, pp 1–32

    Google Scholar 

  • Szentágothai J (1970) Les circuits neuronaux de l'ecorce cérèbrale, Bull Acad R Med Belg 10:475–492

    Google Scholar 

  • Szentágothai J (1971) Some geometrical aspects of the neocortical neuropile, Acta Biol Hung 22:107–124

    Google Scholar 

  • Szentágothai J (1978) The neuron network of the cerebral cortex: a functional integration. The Ferrier Lecture, Proc R Soc London B-Series 201:219–248

    Google Scholar 

  • Takashima S, Chan F, Becker LE, Armstrong DL (1980) Morphology of the developing visual cortex of the human infant. A quantitative and qualitative Golgi study, J Neuropath Exp Neurol 39:487–501

    Google Scholar 

  • Tello JF (1934) Les différenciations neurofibrillaires dans le prosencéphale de la souris de 4 a 5 millimetres, Trab Lab Invest Biol (Madrid) 29:339–395

    Google Scholar 

  • Tello JF (1935) Evolution des formation neurofibrillaires dans l'ecorce cérèbrale du foetus de souris blanche depuis les 15 m.m. jusqu' á la naissance, Trab Lab Invest Biol (Madrid) 63:139–171

    Google Scholar 

  • Tömböl T (1978) Comparative data on the Golgi architecture of interneurons of different cortical areas in cat and rabbit, In: Brazier MAB and Petsche H (Eds), Architectonic of the cerebral cortex, Raven Press, New York, pp 59–76

    Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain, Acta Physiol Scand suppl 367:1–48

    Google Scholar 

  • Valverde F (1971) Short axon neuronal subsystems in the visual cortex of the monkey, Int J Neurosci 1:181–197

    Google Scholar 

  • Veratti E (1897) Über einige Struktureigentümlichkeiten der Hirnrinde bei den Säugetieren. Anat Anz 13:377–389

    Google Scholar 

  • Wolff JR (1978) Ontogenetic aspects of cortical architecture: Laminations, In: Brazier MAB and Petche H (Eds). Architectonics of the cerebral cortex, Raven Press, New York, pp 159–173

    Google Scholar 

  • Zunino G (1909) Die myeloarchitektonische Differenzierung der Großhirnrinde beim Kaninchen (Lepus cuniculus), J Psych und Neurol 14:38–70

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by The National Institute of Child Health and Human Development (Grant #09274) NIH. U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marin-Padilla, M., Marin-Padilla, T.M. Origin, prenatal development and structural organization of layer I of the human cerebral (motor) cortex. Anat Embryol 164, 161–206 (1982). https://doi.org/10.1007/BF00318504

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318504

Key words

Navigation