Skip to main content

A New Combinational Logic Minimization Technique with Applications to Cryptology

  • Conference paper
Experimental Algorithms (SEA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6049))

Included in the following conference series:

Abstract

A new technique for combinational logic optimization is described. The technique is a two-step process. In the first step, the non-linearity of a circuit – as measured by the number of non-linear gates it contains – is reduced. The second step reduces the number of gates in the linear components of the already reduced circuit. The technique can be applied to arbitrary combinational logic problems, and often yields improvements even after optimization by standard methods has been performed. In this paper we show the results of our technique when applied to the S-box of the Advanced Encryption Standard (AES [6]). This is an experimental proof of concept, as opposed to a full-fledged circuit optimization effort. Nevertheless the result is, as far as we know, the circuit with the smallest gate count yet constructed for this function. We have also used the technique to improve the performance (in software) of several candidates to the Cryptographic Hash Algorithm Competition. Finally, we have experimentally verified that the second step of our technique yields significant improvements over conventional methods when applied to randomly chosen linear transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyar, J., Matthews, P., Peralta, R.: On the shortest linear straight-line program for computing linear forms. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 168–179. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Boyar, J., Peralta, R.: Tight bounds for the multiplicative complexity of symmetric functions. Theoretical Computer Science 396(1-3), 223–246 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyar, J., Peralta, R.: New logic minimization techniques with applications to cryptology. Cryptology ePrint Archive, Report 2009/191 (2009), http://eprint.iacr.org/

  4. Boyar, J., Peralta, R.: Patent application number 61089998 filed with the U.S. Patent and Trademark Office. In: A new technique for combinational circuit optimization and a new circuit for the S-Box for AES (2009)

    Google Scholar 

  5. Canright, D.: A very compact Rijndael S-box. Technical Report NPS-MA-05-001, Naval Postgraduate School (2005)

    Google Scholar 

  6. FIPS. Advanced Encryption Standard (AES). National Institute of Standards and Technology (2001)

    Google Scholar 

  7. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases. Inf. Comput. 78(3), 171–177 (1988)

    Google Scholar 

  8. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Mastrovito, E.: VLSI architectures for computation in Galois fields. PhD thesis, Linköping University, Dept. Electr. Eng., Sweden (1991)

    Google Scholar 

  10. Paar, C.: Some remarks on efficient inversion in finite fields. In: 1995 IEEE International Symposium on Information Theory, Whistler, B.C. Canada, p. 58 (1995)

    Google Scholar 

  11. Paar, C.: Optimized arithmetic for Reed-Solomon encoders. In: IEEE International Symposium on Information Theory, p. 250 (1997)

    Google Scholar 

  12. Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact rijndael hardware architecture with S-box optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyar, J., Peralta, R. (2010). A New Combinational Logic Minimization Technique with Applications to Cryptology. In: Festa, P. (eds) Experimental Algorithms. SEA 2010. Lecture Notes in Computer Science, vol 6049. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13193-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13193-6_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13192-9

  • Online ISBN: 978-3-642-13193-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics