Skip to main content

On the Shortest Linear Straight-Line Program for Computing Linear Forms

  • Conference paper
Mathematical Foundations of Computer Science 2008 (MFCS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5162))

Abstract

We study the complexity of the Shortest Linear Program (SLP) problem, which is to minimize the number of linear operations necessary to compute a set of linear forms. SLP is shown to be NP-hard. Furthermore, a special case of the corresponding decision problem is shown to be Max SNP-Complete.

Algorithms producing cancellation-free straight-line programs, those in which there is never any cancellation of variables in GF(2), have been proposed for circuit minimization for various cryptographic applications. We show that such algorithms have approximation ratios of at least 3/2 and therefore cannot be expected to yield optimal solutions to non-trivial inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the Association for Computing Machinery 45, 501–555 (1998)

    MATH  MathSciNet  Google Scholar 

  2. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. 21, 1–46 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyar, J., Peralta, R.: On building small circuits (2008) (manuscript in preparation)

    Google Scholar 

  4. Clementi, A.E.F., Trevisan, L.: Improved non-approximability results for vertex cover with density constraints. In: Computing and Combinatorics, pp. 333–342 (1996)

    Google Scholar 

  5. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19, 297–301 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  6. Håstad, J.: Tensor rank is NP-Complete. J. Algorithms 11(4), 644–654 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. S̃hokrollahi, M.A., B̃ürgisser, P., Clausen, M.: Algebraic Complexity Theory, ch. 13. Springer, Heidelberg (1997)

    Google Scholar 

  8. Papadimitriou, C., Yannakakis, M.: Optimization, approximation, and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Savage, J.E.: An algorithm for the computation of linear forms. SICOMP 3(2), 150–158 (1974)

    MATH  MathSciNet  Google Scholar 

  10. Valiant, L.G.: Completeness classes in algebra. In: Proceedings of the 11th Annual ACM Symposium on the Theory of Computing, pp. 249–261 (1979)

    Google Scholar 

  11. Williams, R.: Matrix-vector multiplication in sub-quadratic time (some preprocessing required). In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 995–1001 (2007)

    Google Scholar 

  12. Winograd, S.: On the number of multiplications necessary to compute certain functions. Comm. Pure and Applied Math. 23, 165–179 (1970)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward Ochmański Jerzy Tyszkiewicz

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyar, J., Matthews, P., Peralta, R. (2008). On the Shortest Linear Straight-Line Program for Computing Linear Forms. In: Ochmański, E., Tyszkiewicz, J. (eds) Mathematical Foundations of Computer Science 2008. MFCS 2008. Lecture Notes in Computer Science, vol 5162. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85238-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85238-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85237-7

  • Online ISBN: 978-3-540-85238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics