Skip to main content

Photosynthesis and Stomatal Behaviour

  • Chapter
  • First Online:
Progress in Botany 72

Part of the book series: Progress in Botany ((BOTANY,volume 72))

Abstract

In order for plants to use water efficiently, stomata must ensure an appropriate balance between CO2 demands for photosynthesis and water loss through transpiration. To achieve this, stomatal conductance (gs) often correlates with mesophyll photosynthetic rates. However, the underlying mechanisms and signals that promote this relationship are currently unknown. Stomata and photosynthesis respond to a number of environmental cues; however, the dynamics and magnitude of these responses are not identical, with stomatal responses generally an order of magnitude slower than mesophyll photosynthesis. The resulting disconnection between stomatal conductance and photosynthetic rate means that under naturally fluctuating environmental conditions water use efficiency (WUE) can be far from optimal. Manipulation of stomatal behaviour provides an obvious mechanism for producing plants with improved WUE; however, before such an approach is possible we must first understand the hierarchy of stomatal responses to varying environmental parameters, the mechanisms behind these complex signalling pathways, and how stomatal behaviour is tuned to mesophyll photosynthetic rates or capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasamaa K, Sober A, Rahi M (2001) Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees. Aust J Plant Physiol 28:765–774

    Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: molecular mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  PubMed  CAS  Google Scholar 

  • Akita S, Moss DN (1972) Differential stomatal response between C3 and C4 species to atmospheric CO2 concentration and light. Crop Sci 12:789–793

    Article  Google Scholar 

  • Allaway WD (1973) Accumulation of malate in guard cells of Vicia faba during stomatal opening. Planta 110:63–70

    Article  CAS  Google Scholar 

  • Allen MT, Pearcy RW (2000) Stomatal behaviour and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. Oecologia 122:470–478

    Article  Google Scholar 

  • Aphalo PJ, Jarvis PG (1991) Do stomata respond to relative humidity? Plant Cell Environ 14:127–132

    Article  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Asai N, Nakajima N, Tamaoki M, Kamada H, Kondo N (2000) Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cell in the regulation of stomatal movements. Plant Cell Physiol 41:10–15

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM, Zeiger E (1987) Guard cell bioenergetics. In: Zeiger E, Farquhar G, Cowan IR (eds) Stomatal function. Stanford University press, Stanford, pp 163–194

    Google Scholar 

  • Assmann SM (1993) Signal transductions in guard cells. Annu Rev Cell Biol 9:345–375

    Article  PubMed  CAS  Google Scholar 

  • Ball JT, Berry JA (1982) The C i/C a ratio: a basis for predicting stomatal control of photosynthesis, vol 81. Carnegie Institute of Washington Yearbook, Washington, pp 88–92

    Google Scholar 

  • Ball TJ, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research. Martinus-Nijhoff, Dordrecht, pp 221–224

    Google Scholar 

  • Barbour MM, Cernusak LA, Whitehead D, Griffin KL, Turnbull MH, Tissue DT, Farquhar GD (2005) Nocturnal stomatal conductance and implications for modeling δ18O of leaf-respired CO2 in temperate tree species. Funct Plant Biol 32:1107–1121

    Article  CAS  Google Scholar 

  • Baroli I, Price GD, Badger MR, von Caemmerer S (2008) The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol 146:737–747

    Article  PubMed  CAS  Google Scholar 

  • Barradas VL, Jones HG (1996) Responses of CO2 assimilation to changes in irradiance: laboratory and field data and a model for beans (Phaseolus vulgaris L.). J Exp Bot 47:639–645

    Article  CAS  Google Scholar 

  • Basco R, Janda T, Galiba G, Papp I (2008) Restricted transpiration may not result in improved drought tolerance in a competitive environment for water. Plant Sci 174:200–204

    Article  CAS  Google Scholar 

  • Berger D, Altmann T (2000) A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev 14:1119–1131

    Google Scholar 

  • Bergmann DC, Sack FD (2007) Stomatal development. Annu Rev Plant Biol 58:163–81

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143:134–144

    Article  PubMed  CAS  Google Scholar 

  • Berryman CA, Eamus D, Duff GA (1994) Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment. J Exp Bot 45:539–546

    Article  CAS  Google Scholar 

  • Black CC, Osmond CB (2003) Crassulacean acid metabolism photosynthesis: ‘Working the night shift’. Photosynth Res 76:329–341

    Article  PubMed  CAS  Google Scholar 

  • Boccalandro HE, Rugnone ML, Moreno JE, Ploschuk EL, Serna L, Yanovsky MJ, Casal JJ (2009) Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol 150:1083–1092

    Article  PubMed  CAS  Google Scholar 

  • Boonman A, Prinsen E, Gilmer F, Schurr U, Peeters AJ, Voesenek LACJ, Pons TL (2007) Cytokinin import rate as a signal for photosynthetic acclimation to canopy light gradients. Plant Physiol 143:1841–1852

    Article  PubMed  CAS  Google Scholar 

  • Brodribb TJ, Field TS (2000) Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests. Plant Cell Environ 23:1381–1388

    Article  Google Scholar 

  • Brodribb T, Holbrook N (2004) Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol 162:663–670

    Article  Google Scholar 

  • Brodribb T, Holbrook NM, Zwieniecki MA, Palma B (2005) Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol 165:839–846

    Article  PubMed  Google Scholar 

  • Brodribb T, Jordan G (2008) Internal coordination between hydraulics and stomatal control in leaves. Plant Cell Environ 31:1557–1564

    Article  PubMed  Google Scholar 

  • Brodribb TJ, McAdam SMA, Jordan GJ, Field TS (2009) Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol 183:839–847

    Article  PubMed  Google Scholar 

  • Buckley TN, Mott KA, Farquhar GD (2003) A hydromechanical and biochemical model of stomatal conductance. Plant Cell Environ 26:1767–1785

    Article  CAS  Google Scholar 

  • Bussis D, von Groll U, Fisahn J, Altmann T (2006) Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Funct Plant Biol 33:1037–1043

    Article  Google Scholar 

  • Caird MA, Richards JH, Donovan LA (2007) Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol 143:4–10

    Article  PubMed  CAS  Google Scholar 

  • Cardon ZG, Berry JA (1992) Effects of O2 and CO2 concentration on the steady-state fluorescence yield of single guard cell pairs in intact leaf discs of Tradescantia albiflora. Plant Physiol 99:1238–1244

    Article  PubMed  CAS  Google Scholar 

  • Cardon ZG, Berry JA, Woodrow IE (1994) Dependence of the extent and direction of average stomatal response in Zea mays L. and Phaseolus vulgaris L. on the frequency of fluctuations in environmental stimuli. Plant Physiol 105:1007–1013

    PubMed  CAS  Google Scholar 

  • Casson S, Gray JE (2008) Influence of environmental factors on stomatal development. New Phytol 178:9–23

    Article  PubMed  CAS  Google Scholar 

  • Casson SA, Franklin KS, Gray JE, Grierson CS, Whitelam GC, Hetherington AM (2009) Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr Biol 19:229–234

    Article  PubMed  CAS  Google Scholar 

  • Chaloner WG, McElwain J (1997) The fossil plant record and global climatic change. Rev Palaeobot Palynol 95:73–82

    Article  Google Scholar 

  • Cho D, Shin D, Jeon BW, Kwak JM (2009) ROS-mediated ABA signalling. J Plant Biol 52:102–113

    Article  CAS  Google Scholar 

  • Cockburn W, Ting IP, Steinberg LV (1979) Relationships between stomatal behaviour and internal carbon dioxide concentration in CAM plants. Plant Physiol 63:1029–1032

    Article  PubMed  CAS  Google Scholar 

  • Cominelli E, Galbiati M, Vavasseur A, Conti L, Sala T, Vuylsteke M, Leonhardt N, Dellaporta SL, Tonelli C (2005) A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol 15:1196–1200

    Article  PubMed  CAS  Google Scholar 

  • Condon AG, Reynold MP, Rebetzke GJ, Ginkel M, Richards RR, Farquhar GD (2007) Using stomatal aperture-related traits to select for high yield potential in bread wheat. In: Buck HT, Nisi JE, Salomon N (eds) Developments in plant breeding 11 – wheat production in stressed environments, vol 12. Springer, Berlin, Heidelberg, New York, pp 612–624

    Google Scholar 

  • Coupe SA, Palmer BG, Lake JA, Overy SA, Oxborough K, Woodward FI, Gray JE, Quick WP (2006) Systemic signaling of environmental cues in Arabidopsis leaves. J Exp Bot 57:329–341

    Article  PubMed  CAS  Google Scholar 

  • Cowan IR, Troughton JH (1971) The relative role of stomata in transpiration and assimilation. Planta 97:325–336

    Article  Google Scholar 

  • Cui XH, Hai FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VfPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214

    Article  PubMed  CAS  Google Scholar 

  • Daley MJ, Phillips NG (2006) Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiol 26:411–419

    Article  PubMed  Google Scholar 

  • Das VSR, Santakurmari (1977) Stomatal characteristics of some dicotyledonous plants in relation to the 4 carbon and 3 carbon pathways of photosynthesis. Plant Cell Physiol 18:935–938

    Google Scholar 

  • De Pury DGG, Farquhar GD (1997) Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ 20:537–557

    Article  Google Scholar 

  • Dewar RC (2002) The Ball–Berry–Leuning and Tardieu–Davies stomatal models: synthesis and extension within a spatially aggregated picture of guard cell function. Plant Cell Environ 25:1383–1398

    Article  Google Scholar 

  • Dong J, MacAlister CA, Bergmann DC (2009) BASL controls asymmetric cell division in Arabidopsis. Cell 137:1320–1330

    Article  PubMed  Google Scholar 

  • Donovan LA, Grisé DJ, West JB, Pappert RA, Alder NN, Richards JH (1999) Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs. Oecologia 120:209–217

    Article  Google Scholar 

  • Donovan LA, Linton MJ, Richards JH (2001) Predawn plant water potential does not necessarily equilibrate with soil water potential under well watered conditions. Oecologia 129:328–335

    Google Scholar 

  • Driscoll SP, Prins A, Olmos E, Kunert KJ, Foyer CH (2006) Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves. J Exp Bot 57:381–390

    Article  PubMed  CAS  Google Scholar 

  • Dubbe DR, Farquhar GD, Raschke K (1978) Effect of abscisic acid on the gain of the feedback loop involving carbon dioxide and stomata. Plant Physiol 62:413–417

    Article  PubMed  CAS  Google Scholar 

  • Dwyer SA, Ghannoum O, Nicotra A, von Caemmerer S (2007) High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry. Plant Cell Environ 30:53–66

    Article  PubMed  CAS  Google Scholar 

  • Farquhar DG, Sharkey TD (1982) Stomatal conductance and photosynthesis. Ann Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD, Wong CS (1984) An empirical model of stomatal conductance. Aust J Plant Physiol 11:191–210

    Article  CAS  Google Scholar 

  • Franks PJ, Farquhar GD (1999) A relationship between humidity response, growth form and photosynthetic operating point I C3 plants. Plant Cell Environ 22:1337–1349

    Article  Google Scholar 

  • Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143:78–87

    Article  PubMed  CAS  Google Scholar 

  • Fitzisimons PJ, Weyers JDB (1986) Volume changes of Commelina communis L. guard cell protoplasts in response to K+, light and CO2. Physiol Plant 66:463–468

    Article  Google Scholar 

  • Frechilla S, Talbott LD, Zeiger E (2002) The CO2 response of Vicia faba guard cells acclimates to growth environment. J Exp Bot 53:545–550

    Article  PubMed  CAS  Google Scholar 

  • Frechilla S, Zhu J, Talbott LD, Zeiger E (1999) Stomata from npq1, a Zeaxanthin-less Arabidopsis mutant, lack a specific response to blue light. Plant Cell Physiol 40:949–954

    Article  PubMed  CAS  Google Scholar 

  • Freudenberger H (1940) Die Reaktion der Schliesszellen auf Kohlensäure and Sauerstoffentzug. Protoplasma 35:15–54

    Article  CAS  Google Scholar 

  • Fujino M (1967) Role of adenosine triphosphate and adenosine triphosphatase in stomatal movements. Sci Bull Fac Educ Nagasaki Until 18:1–47

    Google Scholar 

  • Galvez-Valdivieso G, Fryer MJ, Lawson T, Slattery K, Truman W, Smirnoff N, Asami T, Davies WJH, Jones AM, Baker NR, Mullineaux PM (2009) The high light response in Arabidopsis involves ABA signaling between vascular and bundle sheath cells. Plant Cell 21:2143–2162

    Article  PubMed  CAS  Google Scholar 

  • Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644

    Google Scholar 

  • Grantz DA, Assmann SM (1991) Stomatal response to blue-light – water-use efficiency in sugarcane and soybean. Plant Cell Environ 14:683–690

    Article  Google Scholar 

  • Gray JE (2005) Guard cells: transcription factors regulate stomatal movements. Curr Biol 15:593–595

    Article  CAS  Google Scholar 

  • Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Article  PubMed  CAS  Google Scholar 

  • Grulke NE, Alonso R, Nguyen T, Cascio C, Dobrowolski W (2004) Stomata open at night in pole-sized and mature ponderosa pine: implications for O3 exposure metrics. Tree Physiol 24:1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Gotow K, Taylor S, Zeiger E (1988) Photosynthetic carbon fixation in guard cell protoplasts of Vicia faba L. Evidence from radiolabel experiments. Plant Physiol 86:700–705

    Article  PubMed  CAS  Google Scholar 

  • Haake V, Geiger M, Walch-Liu P, Engels C, Zrenner R, Stitt M (1999) Changes in aldolase activity in wild-type potato plants are important for acclimation to growth irradiance and carbon dioxide concentration, because plastid aldolase exerts control over the ambient rate of photosynthesis across a range of growth conditions. Plant J 17:479–489

    Article  CAS  Google Scholar 

  • Hall AE, Schulze ED, Lange OL (1976) Current perspectives of steady state stomatal responses to environments. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life: ecological studies, vol 19. Springer, Berlin, Heidelberg, New York, pp 169–188

    Chapter  Google Scholar 

  • Hampp R, Outlaw WH Jr, Tarczynski MC (1982) Profile of basic carbon pathways in guard cells and other leaf cells of Vicia faba L. Plant Physiol 70:1582–1585

    Article  PubMed  CAS  Google Scholar 

  • Hara K, Kajita R, Torii KU, Bergmann DC, Kakimoto T (2007) The secretory peptide gene EPF1 enforces the stomatal one-cell-spacing rule. Genes Dev 21:1720–1725

    Article  PubMed  CAS  Google Scholar 

  • Harrison EP, Willingham NM, Lloyd JC, Raines CA (1998) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 20:27–36

    Google Scholar 

  • Hashimoto M, Negi J, Young J, Israelsson M, Schroeder JI, Iba K (2006) Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nat Cell Biol 8:391–397

    Article  PubMed  CAS  Google Scholar 

  • Heath OVS (1938) An experimental investigation of the mechanism of stomatal movement, with some preliminary observations upon the response of guard cells to shock. New Phytol 37:385–395

    Article  Google Scholar 

  • Heath OVS, Russell J (1954) Studies in stomatal behaviour IV. An investigation of the light response of wheat stomata with the attempted elimination of control by the mesophyll. J Exp Bot 5:269–292

    Article  CAS  Google Scholar 

  • Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13:535–551

    PubMed  CAS  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  PubMed  CAS  Google Scholar 

  • Hipkins ME, Fitzimons PJ, Weyers JDB (1983) The primary processes of photosystem II in purified guard-cell and mesophyll-cell protoplasts from Commelina communis L. Planta 159:554–560

    Article  CAS  Google Scholar 

  • Hite DRC, Outlaw WH Jr, Tarczynski MC (1993) Elevated levels of both sucrose-phosphate synthase and sucrose synthase in Vicia guard cells indicate cell-specific carbohydrate interconversion. Plant Physiol 101:1217–1221

    PubMed  CAS  Google Scholar 

  • Hu H, Dai M, YaoJ XB, Li X, Zhang Q, Xiong L (2006) Over-expressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Huang XY, Chao DY, Gao JP, Zhu MZ, Shi M, Lin HX (2009) A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes Dev 23:1805–1817

    Article  PubMed  CAS  Google Scholar 

  • Hunt L, Gray JE (2009) The signaling peptide EPF2 controls asymmetric cell divisions during stomatal development. Curr Biol 19:864–869

    Article  PubMed  CAS  Google Scholar 

  • Huxman TE, Monson RK (2003) Stomatal responses of C3, C3–C4, and C4 Flaveria species to light and intercellular CO2 concentration: implications for the evolution of stomatal behaviour. Plant Cell Environ 26:313–322

    Article  CAS  Google Scholar 

  • Imamura S (1943) Untersuchungen uber den Mechanismus der Turgorschwankung der Spaltöffnungesschließzellen. Jpn J Bot 12:82–88

    Google Scholar 

  • Jakab G, Ton J, Flors V, Zimmerli L, Metraux J-P, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid response. Plant Physiol 139:267–274

    Article  PubMed  CAS  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubitim S, Leonhardt N, Elis B, Murata Y, Kwak M (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediate ABA signaling. Proc Natl Acad Sci USA 106:20520–20525

    Article  PubMed  CAS  Google Scholar 

  • Jarvis PG (1993) Prospects for bottom-up models. In: Ehleringer J, Field C (eds) Scaling physiological processes; leaf to globe. Academic, New York, pp 115–116

    Chapter  Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–49

    Article  Google Scholar 

  • Jiang CZ, Rodermel SR (1995) Regulation of photosynthesis during leaf development in RbcS antisense DNA mutants of tobacco. Plant Physiol 107:215–224

    PubMed  CAS  Google Scholar 

  • Jones HG (1976) Crop characteristics and the ratio between assimilation and transpiration. J Appl Ecol 13:605–622

    Article  Google Scholar 

  • Jones HG (1977) Transpiration in barley lines with differing stomatal frequencies. J Exp Bot 23:162–168

    Article  Google Scholar 

  • Jones HG (1985) Partitioning stomatal and non-stomatal limitation to photosynthesis. Plant Cell Environ 8:95–104

    Article  Google Scholar 

  • Jones HG (1987) Breeding for stomatal characters. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 431–443

    Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantative approach to environmental plant physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005) Different signaling and cell death roles of heterotrimeric G protein alpha and beta subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970

    Article  PubMed  CAS  Google Scholar 

  • Kanaoka MM, Pillitteri LJ, Fujii H, Yoshida Y, Bogenschutz NL, Takabayashi J, Zhu J-K, Torii K (2008) SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to Arabidopsis stomatal differentiation. Plant Cell 20:1775–1785

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Lian HL, Wang FF, Huang JR, Yang HQ (2009) Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell 21:2624–2641

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Outlaw WH Jr, Anderson PC, Fiore GB (2007a) Guard cell apoplastic sucrose concentration – a link between leaf photosynthesis and stomatal aperture size in apoplastic phloem loader Vicia faba L. Plant Cell Environ 30:551–558

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Outlaw WH Jr, Fiore GB, Riddle KA (2007b) Guard cell apoplastic photosynthate accumulation corresponds to a phloem-loading mechanisms. J Exp Bot 58:4061–4070

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Geiser M, Suh SJ, Kolukisaoglu HU, Azevedo L, Plaza S, Curtis MD, Richter A, Weder B, Schulz B, Martinoia E (2004) Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. Plant J 39:219–236

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum MUF, Gross LJ, Pearcy RW (1988) Observed and modelled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant Cell Environ 11:111–121

    Google Scholar 

  • Kinoshita T, Shimazaki K (1999) Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18:5548–5558

    Article  PubMed  CAS  Google Scholar 

  • Knapp AK (1993) Gas-exchange dynamics in C3 and C4 grasses – consequences of differences in stomatal conductance. Ecology 74:113–123

    Article  Google Scholar 

  • Kopka J, Provart NJ, Muller-Rober B (1997) Potato guard cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. Plant J 11:871–882

    Article  PubMed  CAS  Google Scholar 

  • Kruijt B, Ongeri S, Jarvis PG (1997) Scaling of PAR absorption, photosynthesis and transpiration from leaves to canopy. In: van Gardingen P, Foody G, Curran P (eds) Scaling up, society for experimental biology seminar series. Cambridge University Press, Cambridge, pp 79–104

    Google Scholar 

  • Kudoyarova GR, Veselov DS, Faizov RG, Veselova SV, Ivanov EA, Farkhutdinov RG (2007) Stomata response to changes in temperature and humidity in wheat cultivars grown under contrasting climatic conditions. Russ J Plant Physiol 54:46–49

    Article  CAS  Google Scholar 

  • Kuiper PJC (1964) Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio odoris. Plant Physiol 39:952–955

    Article  PubMed  CAS  Google Scholar 

  • Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu GH (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Lake JA, Quick WP, Beerling DJ, Woodward FI (2001) Plant development: signals from mature to new leaves. Nature 411:154

    Article  PubMed  CAS  Google Scholar 

  • Lange OL, Medina E (1979) Stomata of the CAM plant Tillandsia recurvata respond directly to humidity. Oecologia 40:357–363

    Article  Google Scholar 

  • Laporte MM, Shen B, Tarczynski C (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705

    Article  PubMed  CAS  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: stomata vs. metabolism and the role of ATP. Ann Bot 89:871–885

    Article  PubMed  CAS  Google Scholar 

  • Lawson T (1997) Heterogeneity in stomatal characteristics, PhD thesis, Dundee

    Google Scholar 

  • Lawson T (2009) Guard cell photosynthesis and stomatal function. New Phytol 181:13–34

    Article  PubMed  CAS  Google Scholar 

  • Lawson T, Lefebvre S, Baker NR, Morison JIL, Raines C (2008) Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2. J Exp Bot 59:3609–3619

    Article  PubMed  CAS  Google Scholar 

  • Lawson T, Morison JIL (2004) Stomatal function and physiology. In: Hemsley AR, Poole I (eds) The evolution of plant physiology; from whole plants to ecosystem. Elsevier Academic, Cambridge, pp 217–242

    Chapter  Google Scholar 

  • Lawson T, Oxborough K, Morison JIL, Baker NR (2002) Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiol 128:52–62

    Article  PubMed  CAS  Google Scholar 

  • Lawson T, Oxborough K, Morison JIL, Baker NR (2003) The response of guard cell photosynthesis to CO2, O2, light and water stress in a range of species are similar. J Exp Bot 54:1734–1752

    Article  CAS  Google Scholar 

  • Lawson T, Weyers JDB (1999) Spatial and temporal variation in gas exchange over the lower surface of Phaseolus vulgaris primary leaves. J Exp Bot 50:1381–1391

    CAS  Google Scholar 

  • Lee DM, Assmann SM (1992) Stomatal responses to light in the facultative Crassulacean acid metabolism species, Portulacaria afra. Plant Physiol 85:35–42

    CAS  Google Scholar 

  • Lee J-S, Bowling DJF (1992) Effect of the mesophyll on stomatal opening in Commelina communis. J Exp Bot 43:951–957

    Article  Google Scholar 

  • Lee J-S, Bowling DJF (1993) The effect of a mesophyll factor on the swelling of guard cell protoplasts of Commelina communis L. J Plant Physiol 142:203–207

    Article  CAS  Google Scholar 

  • Lee J-S, Bowling DJF (1995) Influence of the mesophyll on stomatal opening. Aust J Plant Physiol 22:357–363

    Article  CAS  Google Scholar 

  • Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder J (2004) Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  PubMed  CAS  Google Scholar 

  • Lodge RJ, Dijkstra P, Drake BG, Morison JIL (2001) Stomatal acclimation to increased CO2 in a Florida scrub oak species Quercus myrtifolia Willd. Plant Cell Environ 24:77–88

    Article  CAS  Google Scholar 

  • Lu P, Outlaw WH Jr, Smith BD, Freed GA (1997) A new mechanism for the regulation of stomatal aperture size in intact leaves: accumulation of mesophyll-derived sucrose in guard cell walls of Vicia faba. Plant Physiol 114:109–118

    PubMed  CAS  Google Scholar 

  • Lu P, Zhang SQ, Outlaw WH Jr, Riddle KA (1995) Sucrose: a solute that accumulates in the guard-cell- apoplast and guard cell symplast of open stomata. FEBS Lett 326:180–184

    Article  Google Scholar 

  • Lu Z, Quiñones MA, Zeiger E (2000) Temperature dependence of guard cell respiration and stomatal conductance co-segregate in an F2 population of Pima cotton. Aust J Plant Physiol 27:457–462

    Google Scholar 

  • Lurrie S (1977) Photochemical properties of guard cell chloroplasts. Plant Sci Let 10:219–223

    Article  Google Scholar 

  • Ma SY, Wu WH (2007) AtcPK23 functions in Arabidopsis responses to drought and salt stresses. Plant Mol Biol 65:511–518

    Article  PubMed  CAS  Google Scholar 

  • Maherali H, Reid CD, Polley HW, Johnson HB, Jackson RB (2002) Stomatal acclimation over a sub-ambient to elevated CO2 gradient in a C3/C4 grassland. Plant Cell Environ 25:557–566

    Article  CAS  Google Scholar 

  • Mansfield TA (1994) Some aspects of stomatal physiology relevant to plants cultured in vitro. In: Lumsden PJ, Nicholas JR, Davies WJ (eds) Physiology, growth and development of plants in culture. Kluwer, Dordrecht, pp 120–131

    Chapter  Google Scholar 

  • Mansfield TA, Hetherington AM, Atkinson CJ (1990) Some current aspects of stomatal physiology. Annu Rev Plant Physiol Plant Mol Biol 41:55–75

    Article  CAS  Google Scholar 

  • Mansfield TA, Atkinson CJ (1990) Stomatal behaviour in water stressed plants. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 241–264

    Google Scholar 

  • Marten H, Hyun T, Gomi K, Seo S, Hedrich R, Roelfsema MRG (2008) Silencing of NtMPK4 impairs CO2-induced stomatal closure, activation of anion channels and cytosolic Ca2+ signals in Nicotiana tabacum guard cells. Plant J 55:698–708

    Article  PubMed  CAS  Google Scholar 

  • Masle J, Gilmour SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    Article  PubMed  CAS  Google Scholar 

  • Mawson BT, Zaugg MW (1994) Modulation of light-dependent stomatal opening in isolated epidermis following induction of crassulacean acid metabolism in Mesembryanthemum crystallinum L. Plant Physiol 144:740–746

    Article  CAS  Google Scholar 

  • McElwain JC, Chaloner WG (1995) Stomatal density and index of fossil plants track atmospheric carbon dioxide in the palaeozoic. Ann Bot 76:389–395

    Article  Google Scholar 

  • McElwain JC, Mitchell FJG, Jones MB (1995) Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentration of the Holocene. Holocene 5:216–219

    Article  Google Scholar 

  • Meinzer FC (2002) Co-ordination of vapour and liquid phase water transport properties in plants. Plant Cell Environ 25:265–274

    Article  PubMed  Google Scholar 

  • Messinger SM, Buckley TN, Mott KA (2006) Evidence for involvement of photosynthetic processes in the stomatal response to CO2. Plant Physiol 140:771–778

    Article  PubMed  CAS  Google Scholar 

  • Miao Y, Lv D, Wang P, Wang X-C, Chen J, Wang XC, Chen J, Miao C, Song CP (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa S-I, Livingston NJ, Turpin DH (2006) Stomatal development in new leaves is related to the stomatal conductance of mature leaves in poplar (Populus trichocarpa x P. deltoides). J Exp Bot 57:373–380

    Article  PubMed  CAS  Google Scholar 

  • McNaughton KG, Jarvis PG (1991) Effects of spatial scale on stomatal control of transpiration. Agricult Forest Meteorol 54:279–301

    Article  Google Scholar 

  • Morison JIL (1985) Intercellular CO2 concentration and stomatal response to CO2. In: Zeiger E, Cowan IR, Farquhar GD (eds) Stomatal function. Stanford University Press, Stanford

    Google Scholar 

  • Morison JIL (1993) Response of plants to CO2 under water limited conditions. Vegetation 105:193–209

    Article  Google Scholar 

  • Morison JIL (2003) Plant water use, stomatal control. In: Stewart BA, Howell TA (eds) Encyclopedia of water science. Marcel Dekker, New York, pp 680–685

    Google Scholar 

  • Morison JIL, Gifford RM (1983) Stomatal sensitivity to carbon dioxide and humidity: a comparison of two C3 and two C4 grass species. Plant Physiol 71:789–796

    Article  PubMed  CAS  Google Scholar 

  • Mott KA (1988) Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol 86:200–203

    Article  PubMed  CAS  Google Scholar 

  • Mott KA (2009) Opinion: stomatal responses to light and CO2 depend on the mesophyll. Plant Cell Environ 32:1479–1486

    Article  PubMed  CAS  Google Scholar 

  • Mott KA, Peak D (2007) Stomatal patchiness and task-performing networks. Ann Bot 99:219–226

    Article  PubMed  Google Scholar 

  • Mott KA, Sibbernsen ED, Shope JC (2008) The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ 31:1299–1306

    Article  PubMed  CAS  Google Scholar 

  • Nadeau JA (2009) Stomatal development: new signals and fate determinants. Curr Opin Plant Biol 12:29–35

    Article  PubMed  CAS  Google Scholar 

  • Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346

    Article  PubMed  CAS  Google Scholar 

  • Nardini A, Salleo S (2005) Water stress-induced modifications on leaf hydraulic architecture in sunflower: co-ordination with gas exchange. J Exp Bot 56:3093–3101

    Article  PubMed  CAS  Google Scholar 

  • Nilson SE, Assmann SM (2007) The control of transpiration. Insights from Arabidopsis. Plant Physiol 143:19–27

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460

    Article  PubMed  CAS  Google Scholar 

  • Noe SM, Giersch C (2004) A simple dynamic model of photosynthesis in oak leaves: coupling leaf conductance and photosynthetic carbon fixation by a variable intracellular CO2 pool. Funct Plant Biol 31:1195–1204

    Article  CAS  Google Scholar 

  • Nunes-Nesi A, Carrari F, Gibon Y, Sulpice R, Lytovchenko A, Fisahn J, Graham J, Ratcliffe RG, Sweetlove LJ, Fernie AR (2007) Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant J 50:1093–1106

    Article  PubMed  CAS  Google Scholar 

  • Nunes-Nesi A, Carrari F, Lytovchenko A, Smith AM, Loureiro ME, Ratcliffe RG, Sweetlove LJ, Fernie AR (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622

    Article  PubMed  CAS  Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Annu Rev Plant Physiol 29:397–414

    Article  Google Scholar 

  • Outlaw WH Jr (1982) Carbon metabolism in guard cells. Recent Adv Phytochem 17:185–222

    Google Scholar 

  • Outlaw WH Jr (1983) Current concepts on the role of potassium in stomatal movements. Physiol Plant 59:302–311

    Article  CAS  Google Scholar 

  • Outlaw WH Jr (1987) A minireview: comparative biochemistry of photosynthesis in palisade cells, spongy cells and guard cells of C3 leaves. In: Biggins J (ed) Progress in photosynthesis research, vol IV, 5. Martinus Nijhoff, Dordrecht, pp 265–272

    Google Scholar 

  • Outlaw WH Jr (1989) Critical examination of the quantitative evidence for and against photosynthetic CO2 fixation in guard cells. Physiol Plant 77:275–281

    Article  CAS  Google Scholar 

  • Outlaw WH Jr (1990) Kinetic properties of guard-cell phosphoenolpyruvate carboxylase. Biochem Physiol Pflanz 186:317–325

    CAS  Google Scholar 

  • Outlaw WH Jr (2003) Integration of cellular and physiological functions of guard cells. Crit Rev Plant Sci 22:503–529

    Article  Google Scholar 

  • Outlaw WH Jr, De Vleighere-He X (2001) Transpiration rate: an importance factor in controlling sucrose content of the guard cell apoplast of broad bean. Plant Physiol 126:1717–1724

    Article  Google Scholar 

  • Outlaw WH Jr, Manchester J, Di Camelli CA, Randall DD, Rapp B, Veither GM (1979) Photosynthetic carbon reduction pathway is absent in chloroplasts of Vicia faba guard cells. Proc Natl Acad Sci USA 76:6371–6375

    Article  PubMed  CAS  Google Scholar 

  • Outlaw WH Jr, Tarczynski MC, Anderson LC (1982) Taxonomic survey for the presence of ribulose-1,5-bisphosphate carboxylase activity in guard cells. Plant Physiol 70:1218–1220

    Article  PubMed  CAS  Google Scholar 

  • Parvathi K, Raghavendra AS (1997) Both Rubisco and phosphoenolpyruvate carboxylase are beneficial for stomatal function in epidermal strips of Commelina benghalensis. Plant Sci 124:153–157

    Article  CAS  Google Scholar 

  • Pearcy RW (1990) Sunflecks and photosynthesis in plant canopies. Annu Rev Plant Physiol Plant Mol Biol 41:421–453

    Article  CAS  Google Scholar 

  • Pearson CJ (1973) Daily changes in stomatal aperture and in carbohydrates and malate within epidermis and mesophyll of leaves of Commelina cyanea and Vicia faba. Aust J Biol Sci 26:1035–1044

    CAS  Google Scholar 

  • Pearson CJ, Milthorpe FL (1974) Structure, carbon dioxide fixation and metabolism of stomata. Aust J Plant Physiol 1:221–236

    Article  CAS  Google Scholar 

  • Pemadasa MA (1981) Photocontrol of stomatal movements. Biol Rev Camb Phil Soc 56:551–559

    Article  CAS  Google Scholar 

  • Pfannschmidt T, Bräutigam K, Wagner R, Dietzel L, Schröter Y, Steiner S, Nykytenko A (2009) Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding. Ann Bot 103:599–607

    Article  PubMed  CAS  Google Scholar 

  • Pham J, Desikan R (2009) ROS signalling in stomata. In: Rio LA, Puppo A (eds) Reactive oxygen species in plant signaling. Springer, Berlin, Heidelberg, New York, pp 55–71

    Chapter  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34:187–203

    Article  PubMed  CAS  Google Scholar 

  • Poffenroth M, Green DB, Tallman G (1992) Sugar concentrations in guard cells of Vicia faba illuminated with red or blue light: analysis by high performance liquid chromatography. Plant Physiol 98:1460–1471

    Article  PubMed  CAS  Google Scholar 

  • Raghavendra AS, Vani T (1989) Respiration in guard cells: pattern and possible role in stomatal function. J Plant Physiol 135:3–8

    Article  CAS  Google Scholar 

  • Rao M, Anderson LE (1983) Light and stomatal metabolism. 1. Possible involvement of light-modulation of enzymes in stomatal movement. Plant Physiol 71:456–459

    Article  PubMed  CAS  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ramos C, Hall AE (1982) Relationships between leaf conductance, intercellular CO2 partial pressure and CO2 uptake rate in two C3 and two C4 plant species. Photosynthetica 16:343–355

    Google Scholar 

  • Raschke K (1970) Temperature dependencies and apparent activation energies of stomatal opening and closing. Planta 95:1–17

    Article  Google Scholar 

  • Raschke K (1978) Movements using turgor mechanisms. In: Haupt W, Feinleib ME (eds) Encyclopedia of plant physiology, physiology of movements. Springer, Berlin, Heidelberg, New York, pp 387–441

    Google Scholar 

  • Raschke K (1972) Saturation kinetics of the velocity of stomatal closing to CO2. Plant Physiol 49:229–234

    Article  PubMed  CAS  Google Scholar 

  • Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26:309–340

    Article  CAS  Google Scholar 

  • Raschke K, Dittrich P (1977) [14C] carbon dioxide fixation by isolated leaf epidermis with stomata closed or open. Planta 134:69–75

    Article  CAS  Google Scholar 

  • Rebetzke GJ, Richards RA, Condon AG, Farquhar GD (2006) Inheritance of carbon isotope discrimination in bread wheat (Triticum aestivum L.). Euphytica 150:97–106

    Article  CAS  Google Scholar 

  • Reckmann U, Scheibe R, Raschke K (1990) Rubisco activity in guard cell compared with the solute requirement for stomatal opening. Plant Physiol 92:246–253

    Article  PubMed  CAS  Google Scholar 

  • Ripullone F, Matsuo N, Stuart-Williams H, Wong SC, Borghetti M, Tani M, Farquhar GD (2008) Environmental effects on oxygen isotope enrichment of leaf water in cotton leaves. Plant Physiol 146:729–736

    Article  PubMed  CAS  Google Scholar 

  • Ritte G, Raschke K (2003) Metabolite export of isolated guard cell chloroplasts of Vicia faba. New Phytol 159:195–202

    Article  CAS  Google Scholar 

  • Ritte G, Rosenfeld J, Rohrig K, Raschke K (1999) Rates of sugar uptake by guard cell protoplasts of Pisum satvum L. related to the solute requirements for stomatal opening. Plant Physiol 121:647–655

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema MRG, Hanstein S, Fell HH, Hedrich R (2002) CO2 provides an intermediate link in the red light response of guard cells. Plant J 32:65–75

    Article  PubMed  CAS  Google Scholar 

  • Roelfsema MRG, Konrad KR, Marten H, Psaras GK, Hartung W, Hedrich H (2006) Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO2 and abscisic acid. Plant Cell Environ 29:1595–1605

    Article  PubMed  CAS  Google Scholar 

  • Rogiers SY, Greer DH, Hutton RJ, Landsberg JJ (2009) Does night time transpiration contribute to anisohydric behaviour in a Vitus vinifera cultivar? J Exp Bot 60:3763–3763

    Article  CAS  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Sack L, Frole K (2006) Leaf structural diversity is related to hydraulic capacity in tropical rainforest trees. Ecology 87:483–491

    Article  PubMed  Google Scholar 

  • Sage RF, Sharkey TD (1987) The effect of temperature on the occurrence of O2 and CO2 insensitive photosynthesis in field grown plants. Plant Physiol 84:658–664

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Wedin DA, Li M (1999) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) C4 biology. Academic, San Diego, pp 313–374

    Google Scholar 

  • Šantrůček J, Sage RF (1996) Acclimation of stomatal conductance to a CO2-enriched atmosphere and elevated temperature in Chenopodium album. Aust J Plant Physiol 23:467–478

    Article  Google Scholar 

  • Scheibe R, Reckmann U, Hedrich R, Raschke K (1990) Malate dehydrogenases in guard cells of Pitsum sativum. Plant Physiol 93:1358–1364

    Article  PubMed  CAS  Google Scholar 

  • Schnabl H, Elbert C, Krammer G (1982) The regulation of the starch-malate balances during volume changes of guard cell protoplasts. J Exp Bot 33:996–1003

    Article  CAS  Google Scholar 

  • Schoch PG, Zinsou C, Sibi M (1980) Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L. I Effect of light intensity. J Exp Bot 31:1211–1216

    Article  Google Scholar 

  • Schoch PG, Jacques R, Lecharny A, Sibi M (1984) Dependence of the stomatal index on environmental factors during stomatal differentiation in leaves of Vigna sinensis L.II Effect of different light quality. J Exp Bot 35:1405–1409

    Article  Google Scholar 

  • Schwartz A, Zeiger E (1984) Metabolic energy for stomatal opening. Role of photophosphorylation and oxidative phosphorylation. Planta 161:129–136

    Article  CAS  Google Scholar 

  • Sekiya N, Yano K (2008) Stomatal density of cowpea correlates with carbon isotope discrimination in different phosphorus, water and CO2 environments. New Phytol 179:799–807

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Raschke K (1981) Separation and measurement of direct and indirect effects of light on stomata. Plant Physiol 68:33–40

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki K (1989) Ribulose bisphosphate carboxylase activity and photosynthetic O2 evolution rate in Vicia guard cell protoplasts. Plant Physiol 91:459–463

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki K-I, Doi M, Assmann SM, Kinoshita T (2007) Light regulation of stomatal movements. Annu Rev Plant Biol 58:219–247

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki K, Zeiger E (1985) Cyclic and non-cyclic phosphorylation in isolated guard cell protoplasts from Vicia faba L. Plant Physiol 78:211–214

    Article  PubMed  CAS  Google Scholar 

  • Shimazaki K, Terada J, Tanaka K, Kondo N (1989) Calvin–Benson cycle enzymes in guard-cell protoplasts from Vicia faba L. Plant Physiol 90:1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Snyder KA, Richards JH, Donovan LA (2003) Night-time conductance in C3 and C4 species: do plants lose water at night? J. Exp Bot 54:861–865

    Article  CAS  Google Scholar 

  • Spalding MH, Stumpf DK, Ku MSB, Burris RH, Edwards GE (1979) Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum. Aust J Plant Physiol 8:557–567

    Article  Google Scholar 

  • Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agr Forest Meteorol 104:13–23

    Article  Google Scholar 

  • Stadler R, Buttner M, Ache P, Hedrich R, Ivashikina N, Melzer M, Shearson SM, Smith SM, Sauer N (2003) Diurnal and light-regulated expression of AtsSTP1 in guard cells of Arabidopsis. Plant Physiol 133:528–537

    Article  PubMed  CAS  Google Scholar 

  • Still CJ, Berry JA, Collatz GJ, DeFries RS (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycles 17:1006

    Article  CAS  Google Scholar 

  • Suzuki Y, Miyamoto T, Yoshizawa R, Mae T, Makino A (2009) Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an over-expression of RBCS. Plant Cell Environ 32:417–427

    Article  PubMed  CAS  Google Scholar 

  • Tallman G, Zhu J, Mawson BT, Amodeo G, Nouhi Z, Levy K, Zeiger E (1997) Induction of CAM in Mesembryanthemum crystallinum abolishes the stomatal response to blue light and light-dependent Zeaxanthin formation in guard cell chloroplasts. Plant Cell Physiol 38:236–242

    Article  CAS  Google Scholar 

  • Tarczynski MC, Outlaw WH Jr, Arold N, Neuhoff V, Hampp R (1989) Electrophoretic assay for ribulose 1,5-bisphosphate carboxylase/oxygenase in guard cells and other leaf cells of Vicia faba L. Plant Physiol 89:1088–1093

    Article  PubMed  CAS  Google Scholar 

  • Thomas PW, Woodward FI, Quick WP (2004) Systemic irradiance signalling in tobacco. New Phytol 161:193–198

    Article  CAS  Google Scholar 

  • Tichà I (1982) Photosynthetic characteristics during ontogenesis of leaves. 7. Stomatal density and sizes. Photosynthetica 16:375–471

    Google Scholar 

  • Tinoco-Ojanguren C, Pearcy RW (1993) Stomatal dynamics and its importance to carbon gain in 2 rain forest Piper species.1. VPD Effects on the transient stomatal response to light flecks. Oecologia 94:388–394

    Article  Google Scholar 

  • Tominaga M, Kinoshita T, Shimazaki K (2001) Guard-cell chloroplasts provide ATP required for H+ pumping in the plasma membrane and stomatal opening. Plant Cell Physiol 42:795–802

    Article  PubMed  CAS  Google Scholar 

  • Tuba Z, Szente K, Koch J (1994) Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat. J Plant Physiol 144:661–668

    Article  CAS  Google Scholar 

  • Turner NC (1979) Differences in response of adaxial and abaxial stomata to environmental variables. In: Sen DS, Chawan DD, Bansal RP (eds) Structure function and ecology of the stomata. Bishen Singh Mahendra Pal Singh, Dehra Dun, pp 320–329

    Google Scholar 

  • Van Breusegem F, Bailey-Serres J, Mittler R (2008) Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol 147:978–984

    Article  PubMed  CAS  Google Scholar 

  • Vavasseur A, Raghavendra AS (2005) Guard cell metabolism and CO2 sensing. New Phytol 165:665–682

    Article  PubMed  CAS  Google Scholar 

  • von Caemmerer S, Griffiths H (2009) Stomatal responses to CO2 during a diel Crassulacean acid metabolism cycle in Kalanchoe daigremontiana and Kalanchoe pinnata. Plant Cell Environ 32:567–576

    Article  CAS  Google Scholar 

  • von Caemmerer S, Lawson T, Oxborough K, Baker NR, Andrews TJ, Raines CA (2004) Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J Exp Bot 55:1157–1166

    Article  CAS  Google Scholar 

  • Wang Y, Chen X, Xiang C-B (2007a) Stomatal density and bio-water saving. J Integr Plant Biol 49:1435–1444

    Article  CAS  Google Scholar 

  • Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007b) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Song CP (2008) Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol 178:703–718

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ying JF, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan JX, Dennis DT, McCourt P, Huang YF (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Noguchi KO, Terashima I (2008) Distinct light responses of adaxial and abaxial stomata in leaves of Helianthus annuus L. Plant Cell Environ 31:1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Weber PM, Fischer K (2007) Making the connections – the crucial role of metabolite transporters at the interface between chloroplast and cytosol. FEBS Lett 581:2215–2222

    Article  PubMed  CAS  Google Scholar 

  • Weyers JDB, Lawson T (1997) Heterogeneity in stomatal characteristics. Adv Bot Res 26:317–352

    Article  Google Scholar 

  • Weyers JDB, Lawson T, Peng Z (1997) Variation in stomatal characteristics at the whole leaf level. In: van Gardingen P, Foody G, Curran P (eds) Scaling up. Society for experimental biology seminar series. Cambridge University Press, Cambridge, pp 129–149

    Google Scholar 

  • Weyers JDB, Meidner H (1990) Methods in stomatal research. Longman Scientific and Technical, Harlow

    Google Scholar 

  • Willmer CM (1983) Phosphoenolpyruvate carboxylase activity and stomatal operation. Physiol Veg 21:943–953

    CAS  Google Scholar 

  • Willmer CM, Dittrich P (1974) Carbon dioxide fixation by epidermal and mesophyll tissues of Tulipa and Commelina. Planta 117:123–132

    Article  CAS  Google Scholar 

  • Willmer CM, Fricker M (1996) Stomata, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  • Wingler A, Quick WP, Bungard RA, Bailey KJ, Lea PJ, Leegood RC (1999) The role of photorespiration during drought stress: an analysis utilizing barley mutants with reduced activities of photorespiratory enzymes. Plant Cell Environ 22:361–373

    Article  CAS  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282:424–426

    Article  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1985) Leaf conductance in relation to rate of CO2 assimilation II. Effects of short-term exposures to different photon flux densities. Plant Physiol 78:826–829

    Article  PubMed  CAS  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature 327:617–618

    Article  Google Scholar 

  • Xu DQ, Terashima K, Crang RFE, Chen XM, Hesketh JD (1994) Stomatal and non-stomatal acclimation to a CO2-enriched atmosphere. Biotronics 23:1–9

    CAS  Google Scholar 

  • Yang CY, Chen YC, Jauh GY, Wang CS (2005) A lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol 139:836–846

    Article  PubMed  CAS  Google Scholar 

  • Yano S, Terashima I (2001) Separate localization of light signal perception for sun or shade type chloroplast and palisade tissue differentiation in Chenopodium album. Plant Cell Physiol 42:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Zeiger E, Iino M, Ogawa T (1985) The blue light response of stomata: pulse kinetics and some mechanistic implications. Photochem Photobiol 42:759–763

    Article  Google Scholar 

  • Zeiger E, Talbott LD, Frechilla S, Srivastava A, Zhu J (2002) The guard cell chloroplast: a perspective for the twenty-first century. New Phytol 153:415–424

    CAS  Google Scholar 

  • Zeiger E, Zhu JX (1998) Role of zeaxanthin in blue light photoreception and the modulation of light-CO2 interactions in guard cells. J Exp Bot 49:433–442

    Google Scholar 

  • Zemel E, Gepstein S (1985) Immunological evidence for the presence of ribulose bisphosphate carboxylase in guard cell chloroplasts. Plant Physiol 78:586–590

    Article  PubMed  CAS  Google Scholar 

  • Zhao Z, Zhang W, Stanley BA, Assmann SM (2008) Functional proteomics of Arabidopsis thaliana guard cells uncovers new stomatal signaling pathways. Plant Cell 20:3210–3226

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhu H, Zhang Q, Li M, Yan M, Wang R, Wang L, Welti R, Zhang W, Wang X (2009) Phospholipase Dal1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  PubMed  CAS  Google Scholar 

  • Zhu M, Dai S, McClung S, Yan X, Chen S (2009) Functional differentiation of Brassica napus guard cells and mesophyll cells revealed by comparative proteomics. Mol Cell Proteom 8:752–766

    Article  CAS  Google Scholar 

  • Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy Lawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lawson, T., von Caemmerer, S., Baroli, I. (2010). Photosynthesis and Stomatal Behaviour. In: Lüttge, U., Beyschlag, W., Büdel, B., Francis, D. (eds) Progress in Botany 72. Progress in Botany, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13145-5_11

Download citation

Publish with us

Policies and ethics