Skip to main content

LEA Proteins: Versatility of Form and Function

  • Chapter
  • First Online:
Dormancy and Resistance in Harsh Environments

Part of the book series: Topics in Current Genetics ((TCG,volume 21))

Abstract

LEA proteins represent one of the functional elements thought to be important in maintaining viability of organisms and biological structures in the ametabolic dry state. They are found in plant tissues, seeds and pollen, anhydrobiotic invertebrates and some desiccation-tolerant micro-organisms. Recent findings suggest that LEA proteins play various, possibly multiple, roles in the drying cell: they are implicated in the homeostasis of proteins and nucleic acids, in stabilizing cell membranes, in redox balancing and in the formation and stability of the glassy state. This striking versatility might derive from the largely unstructured nature of LEA proteins in solution and the associated structural and functional plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    Article  PubMed  Google Scholar 

  • Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93:13404–13409

    Article  PubMed  CAS  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Battista JR, Park MJ, McLemore AE (2001) Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zvi AP, Goloubinoff P (2001) Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol 135:84–93

    Article  PubMed  CAS  Google Scholar 

  • Bies-Ethève N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124

    Article  PubMed  Google Scholar 

  • Boudet J, Buitink J, Hoekstra FA, Rogniaux H, Larré C, Satour P, Leprince O (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiol 140:1418–1436

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    PubMed  CAS  Google Scholar 

  • Browne JA, Tunnacliffe A, Burnell AM (2002) Plant desiccation gene found in a nematode. Nature 416:38

    Article  PubMed  CAS  Google Scholar 

  • Browne JA, Dolan KM, Tyson T, Goyal K, Tunnacliffe A, Burnell AM (2004) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryot Cell 3:966–975

    Article  PubMed  CAS  Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–220

    Article  PubMed  CAS  Google Scholar 

  • Cacela C, Hincha DK (2006) Low amounts of sucrose are sufficient to depress the phase transition temperature of dry phosphatidylcholine, but not for lyoprotection of liposomes. Biophys J 90:2831–2842

    Article  PubMed  CAS  Google Scholar 

  • Caprioli M, Katholm AK, Melone G, Ramløv H, Ricci C, Santo N (2004) Trehalose in desiccated rotifers: a comparison between a bdelloid and a monogonont species. Comp Biochem Physiol 139:527–532

    Article  Google Scholar 

  • Carrari F, Fernie AR, Iusem ND (2004) Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends Plant Sci 9:57–59

    Article  PubMed  CAS  Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci USA 104:18073–18078

    Article  PubMed  CAS  Google Scholar 

  • Cheah KSE, Osborne DJ (1978) DNA lesions occur with loss of viability in embryos of ageing rye seed. Nature 272:593–599

    Article  PubMed  CAS  Google Scholar 

  • Clegg JS (2001) Cryptobiosis – a peculiar state of biological organization. Comp Biochem Physiol B 128:613–624

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Cristofari G, Darlix JL (2002) The ubiquitous nature of RNA chaperone proteins. Prog Nucleic Acid Res Mol Biol 72:223–268

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103

    Google Scholar 

  • Cuming AC (1999) LEA proteins. In: Shewry PR, Casey R (eds) Seed proteins. Kluwer, Dordrecht, NL, pp 753–780

    Chapter  Google Scholar 

  • Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10:623–638

    PubMed  CAS  Google Scholar 

  • Dure L III (1993a) Structural motifs in Lea proteins. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress. The American Society of Plant Physiologists, Rockville, MD, pp 91–103

    Google Scholar 

  • Dure L III (1993b) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  PubMed  CAS  Google Scholar 

  • Dure L III (2001) Occurrence of a repeating 11-mer amino acid sequence motif in diverse organisms. Protein Pept Lett 8:115–122

    Article  CAS  Google Scholar 

  • Dure L III, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20:4162–4168

    Article  PubMed  CAS  Google Scholar 

  • Dure L III, Crouch M, Harada J, Ho T-HD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  Google Scholar 

  • Egerton-Warburton LM, Balsamo RA, Close TJ (1997) Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol Plant 101:545–555

    Article  CAS  Google Scholar 

  • Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Ann Rev Biochem 53:595–623

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Hartl F-U (2003) Protein folding and chaperones. In: Cooper DN (ed) Nature encyclopedia of the human genome. Nature, London, pp 806–810

    Google Scholar 

  • Frankel N, Nunes-Nesi A, Balbo I, Mazuch J, Centeno D, Iusem ND, Fernie AR, Carrari F (2007) ci21A/Asr1 expression influences glucose accumulation in potato tubers. Plant Mol Biol 63:719–730

    Article  PubMed  CAS  Google Scholar 

  • Gal TZ, Glazer I, Koltai H (2004) An LEA group 3 family member is involved in survival of C. elegans during exposure to stress. FEBS Lett 577:21–26

    Article  PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    Article  PubMed  CAS  Google Scholar 

  • Goldgur Y, Rom S, Ghirlando R, Shkolnik D, Shadrin N, Konrad Z, Bar-Zvi D (2007) Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress- and salt stress-regulated plant-specific protein, from unfolded to folded state. Plant Physiol 143:617–628

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Tisi L, Basran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278:12977–12984

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • Grelet J, Benamar A, Teyssier E, Avelange-Macherel M-H, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137:157–167

    Article  PubMed  CAS  Google Scholar 

  • Guidetti R, Jönsson KI (2002) Long-term anhydrobiotic survival in semi-terrestrial micrometazoans. J Zool 257:181–187

    Article  Google Scholar 

  • Haaning S, Radutoiu S, Hoffmann SV, Dittmer J, Giehm L, Otzen DE, Stougaard J (2008) An unusual intrinsically disordered protein from the model legume Lotus japonicus stabilizes proteins in vitro. J Biol Chem 283:31142–31152

    Article  PubMed  CAS  Google Scholar 

  • Hand SC, Jones D, Menze MW, Witt TL (2006) Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. J Exp Zool 305A:1–5

    Article  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Fujinaga M, Kuboi T (2005) Metal binding by citrus dehydrin with histidine-rich domains. J Exp Bot 56:2695–2703

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Shinoda Y, Tanaka Y, Kuboi T (2009) DNA binding of citrus dehydrin promoted by zinc ion. Plant Cell Environ 32:532–541

    Article  PubMed  CAS  Google Scholar 

  • Haslbeck M, Walke S, Stromer T, Ehrnsperger M, White HE, Chen S, Saibil HR, Buchner J (1999) Hsp26: a temperature-regulated chaperone. EMBO J 18:6744–6751

    Article  PubMed  CAS  Google Scholar 

  • Haymet ADJ, Ward LG, Harding MM (1999) Winter flounder “antifreeze” proteins: synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen-bonding interactions. J Am Chem Soc 121:941–948

    Article  CAS  Google Scholar 

  • Haymet ADJ, Ward LG, Harding MM (2001) Hydrophobic analogues of the winter flounder “antifreeze” protein. FEBS Lett 491:285–288

    Article  PubMed  CAS  Google Scholar 

  • Hengherr S, Heyer AG, Koehler HR, Schill RO (2008) Trehalose and anhydrobiosis in tardigrades – evidence for divergence in responses to dehydration. FEBS J 275:281–288

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

    Article  PubMed  CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    Article  PubMed  Google Scholar 

  • Ivanyi-Nagy R, Lavergne J-P, Gabus C, Ficheux D, Darlix J-L (2008) RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res 36:712–725

    Article  PubMed  CAS  Google Scholar 

  • Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA, Bar-Zvi D (2004) The water- and salt-stress regulated Asr1 gene encodes a zinc-dependent DNA-binding protein. Biochem J 381:373–378

    Article  PubMed  CAS  Google Scholar 

  • Kanias T, Acker JP (2006) Mammalian cell desiccation: facing the challenges. Cell Preserv Technol 4:253–277

    Article  CAS  Google Scholar 

  • Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131:309–316

    Article  PubMed  CAS  Google Scholar 

  • Konrad Z, Bar-Zvi D (2008) Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 227:1213–1219

    Article  PubMed  CAS  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    Article  PubMed  CAS  Google Scholar 

  • Lapinski J, Tunnacliffe A (2003) Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett 553:387–390

    Article  PubMed  CAS  Google Scholar 

  • Leprince O, Colson P, Houssier C, Deltour R (1995) Changes in chromatin structure associated with germination of maize and their relation with desiccation tolerance. Plant Cell Environ 18:619–629

    Article  CAS  Google Scholar 

  • Lin C, Thomashow MF (1992) A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun 183:1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Mattimore V, Battista JR (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637

    PubMed  CAS  Google Scholar 

  • McGee BM (2006) Hydrophilic proteins in the anhydrobiosis of bdelloid rotifers. PhD thesis, University of Cambridge

    Google Scholar 

  • Menze MA, Boswell L, Toner M, Hand SC (2009) Occurrence of mitochondria-targeted late embryogenesis abundant (LEA) gene in animals increases organelle resistance to water stress. J Biol Chem 284:10714–10719

    Article  PubMed  CAS  Google Scholar 

  • Minton KW, Karmin P, Hahn GM, Minton AP (1982) Nonspecific stabilization of stress-susceptible proteins by stress-resistant proteins: a model for the biological role of heat shock proteins. Proc Natl Acad Sci USA 79:7107–7111

    Article  PubMed  CAS  Google Scholar 

  • Mouillon J-M, Eriksson SK, Harryson P (2008) Mimicking the plant cell interior under water stress by macromolecular crowding: disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiol 148:1925–1937

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Kumar S, Hoh JH (2004) Molecular mechanisms for organizing the neuronal cytoskeleton. Bioessays 26:1017–1025

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Inaba T (2008) Evaluation of the protective activities of a late embryogenesis abundant (LEA) related protein, Cor15am, during various stresses in vitro. Biosci Biotechnol Biochem 72:1642–1645

    Article  PubMed  CAS  Google Scholar 

  • Napper DH (1983) Polymeric stabilization of colloidal dispersions. Academic, London

    Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    PubMed  CAS  Google Scholar 

  • Pouchkina-Stantcheva NN, McGee BM, Boschetti C, Tolleter D, Chakrabortee S, Popova AV, Meersman F, Macherel D, Hincha DK, Tunnacliffe A (2007) Functional divergence of former alleles in an ancient asexual invertebrate. Science 318:268–271

    Article  PubMed  CAS  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plants. Plant Cell Environ 25:141–151

    Article  PubMed  CAS  Google Scholar 

  • Rao NK, Roberts EH, Ellis RH (1987) Loss of viability in lettuce seeds and the accumulation of chromosome damage under different conditions of storage. Ann Bot 60:85–96

    Google Scholar 

  • Ratnakumar S, Tunnacliffe A (2006) Intracellular trehalose is neither necessary nor sufficient for desiccation tolerance in yeast. FEMS Yeast Res 6:902–913

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Rodrigo M-J, Colmenero-Flores JM, Gil J-V, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718

    Article  CAS  Google Scholar 

  • Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31:1781–1790

    Article  PubMed  CAS  Google Scholar 

  • Roberts JK, DeSimone NA, Lingle WL, Dure L III (1993) Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos. Plant Cell 5:769–780

    PubMed  CAS  Google Scholar 

  • Rohrig H, Schmidt J, Colby T, Brautigam A, Hufnagel P, Bartels D (2006) Desiccation of the resurrection plant Craterostigma plantagineum induces dynamic changes in protein phosphorylation. Plant Cell Environ 29:1606–1617

    Article  PubMed  Google Scholar 

  • Rohrig H, Colby T, Schmidt J, Harzen A, Facchinelli F, Bartels D (2008) Analysis of desiccation-induced candidate phosphoproteins from Craterostigma plantagineum isolated with a modified metal oxide affinity chromatography procedure. Proteomics 8:3548–3560

    Article  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins – tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  PubMed  CAS  Google Scholar 

  • Sallon S, Solowey E, Cohen Y, Korchinsky R, Egli M, Woodhatch I, Simchoni O, Kislev M (2008) Germination, genetics, and growth of an ancient date seed. Science 320:1464

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarias L (2004) Dehydrin from Citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957

    Article  PubMed  CAS  Google Scholar 

  • Segrest JP, Garber DW, Brouillette CG, Harvey SC, Anantharamaiah GM (1994) The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv Protein Chem 45:303–369

    Article  PubMed  CAS  Google Scholar 

  • Sharon MA, Kozarova A, Clegg JS, Vacratsis PO, Warner AH (2009) Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. Biochem Cell Biol 87(2):415–430

    Article  PubMed  CAS  Google Scholar 

  • Shen-Miller J, Mudgett MB, Schopf W, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. Am J Bot 82:1367–1380

    Article  Google Scholar 

  • Shih M-D, Lin SC, Hsieh J-S, Tsou C-H, Chow T-Y, Lin T-P, Hsing Y-C (2004) Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Mol Biol 56:689–703

    Article  PubMed  CAS  Google Scholar 

  • Shih M, Hoekstra F, Hsing Y (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:211–255

    Article  CAS  Google Scholar 

  • Solomon A, Solomon R, Paperna I, Glazer I (2000) Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein. Parasitology 121:409–416

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95:14570–14575

    Article  PubMed  CAS  Google Scholar 

  • Tolleter D, Jaquinod M, Mangavel C, Passirani C, Payet N, Avelange-Macherel M-H, Macherel D (2007) Drying reveals structure and function of a plant mitochondrial protein. Plant Cell 19:1580–1589

    Article  PubMed  CAS  Google Scholar 

  • Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  PubMed  CAS  Google Scholar 

  • Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18:1169–1175

    Article  PubMed  CAS  Google Scholar 

  • Tompa P, Szász C, Buday L (2005) Structural disorder throws new light on moonlighting. Trends Biochem Sci 30:484–489

    Article  PubMed  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  PubMed  CAS  Google Scholar 

  • Tyson T, Reardon W, Browne JA, Burnell AM (2007) Gene induction by desiccation stress in the entomopathogenic nematode Steinernema carpocapsae reveals parallels with drought tolerance mechanisms in plants. Int J Parasitol 37:763–776

    Article  PubMed  CAS  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7:909–918

    Article  Google Scholar 

  • Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4:52

    Article  PubMed  Google Scholar 

  • Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17

    Article  PubMed  CAS  Google Scholar 

  • Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196–206

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Tunnacliffe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tunnacliffe, A., Hincha, D.K., Leprince, O., Macherel, D. (2010). LEA Proteins: Versatility of Form and Function. In: Lubzens, E., Cerda, J., Clark, M. (eds) Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12422-8_6

Download citation

Publish with us

Policies and ethics