Skip to main content

Photosensory Cues in Plant–Plant Interactions: Regulation and Functional Significance of Shade Avoidance Responses

  • Chapter
  • First Online:
Plant Communication from an Ecological Perspective

Abstract

Plants growing in dense vegetations compete with their neighbors for resources such as water, nutrients, and light. Particularly, competition for light has been thoroughly studied, both for fitness consequences as well as the adaptive behaviors that plants display to win the battle for light interception. Aboveground, plants detect their competitors through photosensory cues, notably the red:far-red light ratio (R:FR). The R:FR is a very reliable indicator of future competition as it decreases in a plant-specific manner through red light absorption for photosynthesis and is sensed with the phytochrome photoreceptors. In addition, also blue light depletion is perceived for neighbor detection. As a response to these light signals, plants display a suite of phenotypic traits defined as the shade avoidance syndrome (SAS). The SAS helps to position the photosynthesizing leaves in the higher zones of a canopy where light conditions are more favorable. In this chapter, we discuss the physiological control mechanisms through which the photosensory signals are transduced into the adaptive phenotypic responses that make up the SAS. Using this mechanistic knowledge as a starting point, we discuss how the SAS functions in the context of the complex multifacetted environments that plants usually grow in. Special attention is paid to trade-offs between SAS and defense against attackers, since recent breakthrough papers have elucidated some of the mechanisms behind this interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abreu ME, Munne-Bosch S (2009) Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60:1261–1271

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Vriezen WH, Van der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Liao LL, Jiang CF, Desnos T, Bartlett J, Fu XD, Harberd NP (2007) DELLAs contribute to plant photomorphogenesis. Plant Physiol 143:1163–1172

    Article  PubMed  CAS  Google Scholar 

  • Ahmad M, Cashmore AR (1993) Hy4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366:162–166

    Article  PubMed  CAS  Google Scholar 

  • Alokam S, Chinnappa CC, Reid DM (2002) Red/far-red light mediated stem elongation and anthocyanin accumulation in Stellaria longipes: differential response of alpine and prairie ecotypes. Can J Bot 80:72–81

    Article  CAS  Google Scholar 

  • Alvey L, Harberd NP (2005) DELLA proteins: integrators of multiple plant growth regulatory inputs? Physiol Plant 123:153–160

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Ballaré CL, Casal JJ, Kendrick RE (1991) Responses of light-grown wild-type and long-hypocotyl mutant cucumber seedlings to natural and simulated shade. Photochem Photobiol 54:819–826

    Article  Google Scholar 

  • Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS (2004) Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134(1):28–31

    Article  PubMed  CAS  Google Scholar 

  • Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci USA 38:662–666

    Article  PubMed  CAS  Google Scholar 

  • Boylan MT, Quail PH (1989) Oat phytochrome is biologically active in transgenic tomatoes. Plant Cell 1:765–773

    PubMed  CAS  Google Scholar 

  • Briggs WR, Beck CF, Cashmore AR, Christie JM, Hughes J, Jarillo JA, Kagawa T, Kanegae H, Liscum E, Nagatani A, Okada K, Salomon M, Rudiger W, Sakai T, Takano M, Wada M, Watson JC (2001) The phototropin family of photoreceptors. Plant Cell 13:993–997

    PubMed  CAS  Google Scholar 

  • Casal JJ, Sanchez RA (1994) Impaired stem-growth responses to blue-light irradiance in light-growth transgenic tobacco seedlings overexpressing Avena phytochrome A. Physiol Plant 91:268–272

    Article  CAS  Google Scholar 

  • Catala C, Rose JKC, Bennett AB (1997) Auxin regulation and spatial localization of an endo-1, 4-beta-d-glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant J 12:417–426

    Article  PubMed  CAS  Google Scholar 

  • Christie J (2007) Phototropin blue light receptors. Annu Rev Plant Biol 58:21–45

    Article  PubMed  CAS  Google Scholar 

  • Clough RC, Vierstra RD (1997) Phytochrome degradation. Plant Cell Environ 20:713–721

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  PubMed  CAS  Google Scholar 

  • de Grauwe L, Vandenbussche F, Tietz O, Palme K, Van der Straeten D (2005) Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol 46:827–836

    Article  PubMed  CAS  Google Scholar 

  • de Kroon H (2007) Ecology – how do roots interact? Science 318:1562–1563

    Article  PubMed  Google Scholar 

  • de Lucas M, Daviere JM, Rodriguez-Falcon M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blazquez MA, Titarenko E, Prat S (2008) A molecular framework for light and gibberellin control of cell elongation. Nature 451:480–491

    Article  PubMed  CAS  Google Scholar 

  • de Vos M, Van Oosten VR, Van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18:923–937

    Article  PubMed  CAS  Google Scholar 

  • Devlin PF, Rood SB, Somers DE, Quail PH, Whitelam GC (1992) Photophysiology of the elongated internode (ein) mutant of Brassica rapa – Ein mutant lacks a detectable phytochrome B-like polypeptide. Plant Physiol 100:1442–1447

    Article  PubMed  CAS  Google Scholar 

  • Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617–1629

    Article  PubMed  CAS  Google Scholar 

  • Djakovic-Petrovic T, de Wit M, Voesenek LACJ, Pierik R (2007) DELLA protein function in growth responses to canopy signals. Plant J 51:117–126

    Article  PubMed  CAS  Google Scholar 

  • Donohue K, Messiqua D, Pyle EH, Heschel MS, Schmitt J (2000) Evidence of adaptive divergence in plasticity: density- and site-dependent selection on shade-avoidance responses in Impatiens capensis. Evolution 54:1956–1968

    PubMed  CAS  Google Scholar 

  • Dudley SA, Schmitt J (1995) Genetic differentiation in morphological responses to simulated foliage shade between populations of Impatiens capensis from open and woodland sites. Funct Ecol 9:655–666

    Article  Google Scholar 

  • Duek PD, Fankhauser C (2005) bHLH class transcription factors take centre stage in phytochrome signalling. Trends Plant Sci 10:51–54

    Article  PubMed  CAS  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Fairchild CD, Schumaker MA, Quail PH (2000) HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction. Genes Dev 14:2377–2391

    PubMed  CAS  Google Scholar 

  • Fankhauser C, Chory J (2000) RSF1, an Arabidopsis locus implicated in phytochrome A signaling. Plant Physiol 124:39–45

    Article  PubMed  CAS  Google Scholar 

  • Feng SH, Martinez C, Gusmaroli G, Wang Y, Zhou JL, Wang F, Chen LY, Yu L, Iglesias-Pedraz JM, Kircher S, Schafer E, Fu XD, Fan LM, Deng XW (2008) Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451:475–4U9

    Article  PubMed  CAS  Google Scholar 

  • Finlayson SA, Lee IJ, Mullet JE, Morgan PW (1999) The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiol 119:1083–1089

    Article  PubMed  CAS  Google Scholar 

  • Folta KM, Pontin MA, Karlin-Neumann G, Bottini R, Spalding EP (2003) Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J 36:203–214

    Article  PubMed  CAS  Google Scholar 

  • Franklin KA (2008) Shade avoidance. New Phytol 179:930–944

    Article  PubMed  CAS  Google Scholar 

  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Fry SC (1998) Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J 332:507–515

    PubMed  CAS  Google Scholar 

  • Fu XD, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    Article  PubMed  CAS  Google Scholar 

  • Fujimori T, Yamashino T, Kato T, Mizuno T (2004) Circadian-controlled basic/helix–loop-helix factor, PIL6, implicated in light-signal transduction in Arabidopsis thaliana. Plant Cell Physiol 45:1078–1086

    Article  PubMed  CAS  Google Scholar 

  • Genoud T, Buchala AJ, Chua NH, Metraux JP (2002) Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J 31:87–95

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 134:1555–1573

    Article  PubMed  CAS  Google Scholar 

  • Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    Article  PubMed  CAS  Google Scholar 

  • Griebel T, Zeier J (2008) Light regulation and daytime dependency of inducible plant defenses in arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol 147:790–801

    Article  PubMed  CAS  Google Scholar 

  • Guo HW, Yang H, Mockler TC, Lin CT (1998) Regulation of flowering time by Arabidopsis photoreceptors. Science 279:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Halliday KJ (2004) Plant hormones: the interplay of brassinosteroids and auxin. Curr Biol 14:1008–1010

    Article  CAS  Google Scholar 

  • Hautier Y, Niklaus AN, Hector A (2009) Competition for light causes plant biodiversity loss after eutrophication. Science 324:636–638

    Article  PubMed  CAS  Google Scholar 

  • Hisamatsu T, King RW, Helliwell CA, Koshioka M (2005) The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol 138:1106–1116

    Article  PubMed  CAS  Google Scholar 

  • Hoecker U, Toledo-Ortiz G, Bender J, Quail PH (2004) The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta 219:195–200

    Article  PubMed  CAS  Google Scholar 

  • Hornitschek P, Lorrain S, Zoete V, Michielin O, Fankhauser C (2009) Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers. EMBO J 28:3893–3902

    Article  PubMed  CAS  Google Scholar 

  • Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR (1997) Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain. Science 278:2120–2123

    Article  PubMed  CAS  Google Scholar 

  • Huq E, Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21:2441–2450

    Article  PubMed  CAS  Google Scholar 

  • Izaguirre MM, Mazza CA, Biondini M, Baldwin IT, Ballare CL (2006) Remote sensing of future competitors: impacts on plant defenses. Proc Natl Acad Sci USA 103:7170–7174

    Article  PubMed  CAS  Google Scholar 

  • Janoudi AK, Gordon WR, Wagner D, Quail P, Poff KL (1997) Multiple phytochromes are involved in red-light-induced enhancement of first-positive phototropism in Arabidopsis thaliana. Plant Physiol 113:975–979

    Article  PubMed  CAS  Google Scholar 

  • Jordan ET, Hatfield PM, Hondred D, Talon M, Zeevaart JAD, Vierstra RD (1995) Phytochrome-A overexpression in transgenic tobacco – correlation of dwarf phenotype with high-concentrations of phytochrome in vascular tissue and attenuated gibberellin levels. Plant Physiol 107:797–805

    Article  PubMed  CAS  Google Scholar 

  • Jouanneau JP, Lapous D, Guern J (1991) In plant-protoplasts, the spontaneous expression of defense reactions and the responsiveness to exogenous elicitors are under auxin control. Plant Physiol 96:459–466

    Article  PubMed  CAS  Google Scholar 

  • Kang JG, Yun J, Kim DH, Chung KS, Fujioka S, Kim JI, Dae HW, Yoshida S, Takatsuto S, Song PS, Park CM (2001) Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105:625–636

    Article  PubMed  CAS  Google Scholar 

  • Kazan K, Manners JM (2009) Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci 14:373–382

    Article  PubMed  CAS  Google Scholar 

  • Kegge W, Pierik R (2010) BVOCs and plant competition. Trends Plant Sci (in press)

    Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Bosma TDG, Hanhart CJ, van der Veen J, Zeevaart JAD (1990) The isolation and characterization of gibberellin-deficient mutants in tomato. Theor Appl Genet 80:852–857

    Article  Google Scholar 

  • Kurashige NS, Agrawal AA (2005) Phenotypic plasticity to light competition and herbivory in Chenopodium album (Chenopodiaceae). Am J Bot 92:21–26

    Article  PubMed  Google Scholar 

  • Kutschera U (1994) The current status of the acid-growth hypothesis. New Phytol 126:549–569

    Article  CAS  Google Scholar 

  • Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, de Carbonnel M, Alonso JM, Ecker JR, Liscum E, Fankhauser C (2006) Phytochrome kinase substrate 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci USA 103:10134–10139

    Article  PubMed  CAS  Google Scholar 

  • Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH (2008) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20:337–352

    Article  PubMed  CAS  Google Scholar 

  • Leymarie J, Damerval C, Marcotte L, Combes V, Vartanian N (1996) Two-dimensional protein patterns of Arabidopsis wild-type and auxin insensitive mutants, axr1, axr2, reveal interactions between drought and hormonal responses. Plant Cell Physiol 37:966–975

    Article  PubMed  CAS  Google Scholar 

  • Lin CT, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu Rev Plant Biol 54:469–496

    Article  PubMed  CAS  Google Scholar 

  • Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C (2008) Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J 53:312–323

    Article  PubMed  CAS  Google Scholar 

  • Luccioni LG, Oliverio KA, Yanovsky MJ, Boccalandro HE, Casal JJ (2002) Brassinosteroid mutants uncover fine tuning of phytochrome signaling. Plant Physiol 128:173–181

    Article  PubMed  CAS  Google Scholar 

  • Ma LG, Li JM, Qu LJ, Hager J, Chen ZL, Zhao HY, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607

    PubMed  CAS  Google Scholar 

  • Martinez-Garcia JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859–863

    Article  PubMed  CAS  Google Scholar 

  • Martínez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209–217

    Article  PubMed  CAS  Google Scholar 

  • Mas P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408:207–211

    Article  PubMed  CAS  Google Scholar 

  • McGuire R, Agrawal AA (2005) Trade-offs between the shade-avoidance response and plant resistance to herbivores? Tests with mutant Cucumis sativus. Funct Ecol 19:1025–1031

    Article  Google Scholar 

  • Morelli G, Ruberti I (2000) Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol 122:621–626

    Article  PubMed  CAS  Google Scholar 

  • Moreno JE, Tao Y, Chory J, Ballare CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci USA 106:4935–4940

    Article  PubMed  CAS  Google Scholar 

  • Morgan DC, Smith H (1979) A systematic relationship between phytochrome-controlled and species habitat, for plants grown in simulated natural radiation. Planta 145:253–258

    Article  CAS  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Goda H, Shimada Y, Yoshida S (2004) Brassinosteroid selectively regulates PIN gene expression in Arabidopsis. Biosci Biotechnol Biochem 68:952–954

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Bari R, Achard P, Lison P, Nemri A, Harberd NP, Jones JDG (2008) DELLAs control plant immune responses by modulating the balance and salicylic acid signaling. Curr Biol 18:650–655

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316–15323

    Article  PubMed  CAS  Google Scholar 

  • Nemhauser JL, Mockler TC, Chory J (2004) Interdependency of brassinosteroid and auxin signaling in Arabidopsis. Plos Biol 2:1460–1471

    Article  CAS  Google Scholar 

  • Novoplansky A (2009) Picking battles wisely: plant behaviour under competition. Plant Cell Environ 32:726–741

    Article  PubMed  Google Scholar 

  • Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN (2007) Rhythmic growth explained by coincidence between internal and external cues. Nature 448:358–361

    Article  PubMed  CAS  Google Scholar 

  • Ohgishi M, Saji K, Okada K, Sakai T (2004) Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101:2223–2228

    Article  PubMed  CAS  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466

    Article  PubMed  CAS  Google Scholar 

  • Park CM (2007) Auxin homeostasis in plant stress adaptation response. Plant Signal Behav 2:306–307

    Article  PubMed  Google Scholar 

  • Pedmale UV, Liscum E (2007) Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem 282:19992–20001

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Harberd NP (1997) Gibberellin deficiency and response mutations suppress the stem elongation phenotype of phytochrome-deficient mutants of Arabidopsis. Plant Physiol 113:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IAMA, Thomma BPHJ, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    PubMed  CAS  Google Scholar 

  • Pierik R, Visser EJW, de Kroon H, Voesenek LACJ (2003) Ethylene is required in tobacco to successfully compete with proximate neighbours. Plant Cell Environ 26:1229–1234

    Article  CAS  Google Scholar 

  • Pierik R, Whitelam GC, Voesenek LACJ, de Kroon H, Visser EJW (2004a) Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant–plant signalling. Plant J 38:310–319

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Cuppens MLC, Voesenek LACJ, Visser EJW (2004b) Interactions between ethylene and gibberellins in phytochrome-mediated shade avoidance responses in tobacco. Plant Physiol 136:2928–2936

    Article  PubMed  CAS  Google Scholar 

  • Pierik R, Djakovic-Petrovic T, Keuskamp DH, de Wit M, Voesenek LACJ (2009) Auxin and ethylene regulate elongation responses to neighbor proximity signals independent of gibberellin and DELLA proteins in Arabidopsis. Plant Physiol 149:1701–1712

    Article  PubMed  CAS  Google Scholar 

  • Potter I, Fry SC (1993) Xyloglucan endotransglycosylase activity in Pea internodes. Effects of applied gibberellic acid. Plant Physiol 103:235–241

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  PubMed  CAS  Google Scholar 

  • Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D (1995) Phytochromes – photosensory perception and signal-transduction. Science 268:675–680

    Article  PubMed  CAS  Google Scholar 

  • Quail PH (2002) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14:180–188

    Article  PubMed  CAS  Google Scholar 

  • Reed JW, Nagpal P, Poole DS, Furuya M, Chory J (1993) Mutations in the gene for the red far-red light receptor phytochrome-B alter cell elongation and physiological-responses throughout Arabidopsis development. Plant Cell 5:147–157

    PubMed  CAS  Google Scholar 

  • Reed JW, Foster KR, Morgan PW, Chory J (1996) Phytochrome B affects responsiveness to gibberellins in Arabidopsis. Plant Physiol 112:337–342

    Article  PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    Article  PubMed  CAS  Google Scholar 

  • Robson PRH, Whitelam GC, Smith H (1993) Selected components of the shade-avoidance syndrome are displayed in a normal manner in mutants of Arabidopsis thaliana and Brassica rapa deficient in phytochrome-B. Plant Physiol 102:1179–1184

    PubMed  CAS  Google Scholar 

  • Robson PRH, McCormac AC, Irvine AS, Smith H (1996) Genetic engineering of harvest index in tobacco through overexpression of a phytochrome gene. Nat Biotechnol 14:995–998

    Article  PubMed  CAS  Google Scholar 

  • Robson PRH, Smith H (1997) Fundamental and biotechnological applications of phytochrome transgenes. Plant Cell Environ 20:831–839

    Article  CAS  Google Scholar 

  • Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portoles S, Rodriguez-Conception M, Martinez-Garcia JF (2007) Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J 26:4756–4767

    Article  PubMed  CAS  Google Scholar 

  • Rojo E, Leon J, Sanchez-Serrano JJ (1999) Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J 20:135–142

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Lee HH, Bennett AB (1997) Expression of a divergent expansin gene is fruit-specific and ripening-regulated. Proc Natl Acad Sci USA 94:5955–5960

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Braam J, Fry SC, Nishitani K (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol 43:1421–1435

    Article  PubMed  CAS  Google Scholar 

  • Ruzicka K, Ljung K, Vanneste S, Podhorska R, Beeckman T, Friml J, Benkova E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19:2197–2212

    Article  PubMed  CAS  Google Scholar 

  • Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426:680–683

    Article  PubMed  CAS  Google Scholar 

  • Sasidharan R, Chinnappa CC, Voesenek LACJ, Pierik R (2008) The regulation of cell wall extensibility during shade avoidance: a study using two contrasting ecotypes of Stellaria longipes. Plant Physiol 148:1557–1569

    Article  PubMed  CAS  Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739

    Article  Google Scholar 

  • Schmitt J, McCormac AC, Smith H (1995) A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. Am Nat 146:937–953

    Article  Google Scholar 

  • Sessa G, Carabelli M, Sassi M, Ciolfi A, Possenti M, Mittempergher F, Becker J, Morelli G, Ruberti I (2005) A dynamic balance between gene activation and repression regulates the shade avoidance response in Arabidopsis. Genes Dev 19:2811–2815

    Article  PubMed  CAS  Google Scholar 

  • Somers DE, Sharrock RA, Tepperman JM, Quail PH (1991) The HY3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome-B. Plant Cell 3:1263–1274

    PubMed  CAS  Google Scholar 

  • Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Ferrer JL, Ljung K, Pojer F, Hong FX, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng YF, Lim J, Zhao YD, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176

    Article  PubMed  CAS  Google Scholar 

  • Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859

    Article  PubMed  CAS  Google Scholar 

  • Terzaghi WB, Cashmore AR (1995) Light-regulated transcription. Annu Rev Plant Physiol Plant Mol Biol 46:445–474

    Article  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YIC, Kitano H, Yamaguchi I, Matsuoka M (2005) Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Vriezen WH, Smalle J, Laarhoven LJJ, Harren FJM, Van der Straeten D (2003) Ethylene and auxin control decreased light intensity. Plant Physiol 133:517–527

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Pierik R, Millenaar FF, Voesenek LA, Van der Straeten D (2005) Reaching out of the shade. Curr Opin Plant Biol 8:462–468

    Article  PubMed  CAS  Google Scholar 

  • von Dahl CC, Baldwin IT (2007) Deciphering the role of ethylene in plant–herbivore interactions. J Plant Growth Regul 26:201–209

    Article  CAS  Google Scholar 

  • Wang D, Pajerowska-Mukhtar K, Culler AH, Dong XN (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol 17:1784–1790

    Article  PubMed  CAS  Google Scholar 

  • Wang HY, Ma LG, Li JM, Zhao HY, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–158

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Weinig C (2000) Plasticity versus canalization: population differences in the timing of shade-avoidance responses. Evolution 54:441–451

    PubMed  CAS  Google Scholar 

  • Yi HC, Joo S, Nam KH, Lee JS, Kang BG, Kim WT (1999) Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol Biol 41:443–454

    Article  PubMed  CAS  Google Scholar 

  • Zurek DM, Rayle DL, Mcmorris TC, Clouse SD (1994) Investigation of gene-expression, growth-kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiol 104:505–513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rens Voesenek, Mieke de Wit and Rashmi Sasidharan for helpful comments on a draft of this manuscript. The authors are financed by the Netherlands Organization for Scientific Research (Veni grant 863.06.01 to RP) and Utrecht University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Pierik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keuskamp, D.H., Pierik, R. (2010). Photosensory Cues in Plant–Plant Interactions: Regulation and Functional Significance of Shade Avoidance Responses. In: Baluška, F., Ninkovic, V. (eds) Plant Communication from an Ecological Perspective. Signaling and Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12162-3_10

Download citation

Publish with us

Policies and ethics