Skip to main content

A Note on the Representation of Cosserat Rotation

  • Chapter
Continuous Media with Microstructure
  • 864 Accesses

Abstract

This brief article provides an independent derivation of a formula given by Kafadar and Eringen (1971) connecting two distinct Cosserat spins. The first of these, the logarithmic spin represents the time rate of change of the vector defining finite Cosserat rotation, whereas the second, the instantaneous spin, gives the local angular velocity representing the infinitesimal generator of that rotation. While the formula of Kadafar and Eringen has since been identified by Iserles et al. (2000) as the differential of the Lie-group exponential, the present work provides an independent derivation based on quaternions. As such, it serves to bring together certain scattered results on quaternionic algebra, which is currently employed as a computational tool for representing rigid-body rotation in various branches of physics, structural and robotic dynamics, and computer graphics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ericksen, J., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Rat. Mech. Anal. 1(1), 295–323 (1957)

    Article  MathSciNet  Google Scholar 

  2. Truesdell, C., Toupin, R.A.: Principles of classical mechanics and field theory. In: Flügge, S. (ed.) Encyclopedia of Physics (Handbuch der Physik), vol. 3/1. Springer, Berlin (1960)

    Google Scholar 

  3. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ratl. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cowin, S.C.: Stress functions for cosserat elasticity. Int. J. Solids Struct. 6(4), 389–398 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kafadar, C.B., Eringen, A.C.: Micropolar media. i. the classical theory. Int. J. Eng. Sci. 9(3), 271–305 (1971)

    Article  Google Scholar 

  6. Mehrabadi, M.M., Cowin, S.C., Jaric, J.: Six-dimensional orthogonal tensor representation of the rotation about an axis in three dimensions. Int. J. Solids Struct. 32(3-4), 439–449 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Park, J., Chung, W.K.: Geometric integration on euclidean group with application to articulated multibody systems. IEEE Trans. Robotics 21(5), 850–863 (2005)

    Article  Google Scholar 

  8. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta numerica 9(1), 215–365 (2000)

    Google Scholar 

  9. Spring, K.W.: Euler parameters and the use of quaternion algebra in the manipulation of finite rotations: A review. Mech. Mach. Theo. 21(5), 365–373 (1986)

    Article  Google Scholar 

  10. Bauchau, O.A., Choi, J.Y.: The vector parameterization of motion. Nonlin. Dyn. 33(2), 165–188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallier, J., Xu, D.: Computing exponentials of skew symmetric matrices and logarithms of orthogonal matrices. Int. J. Robot. Autom. 17, 1–11 (2002)

    Google Scholar 

  12. Lüdkovsky, S.V., van Oystaeyen, F.: Differentiable functions of quaternion variables. Bull. Sci. math. 127(9), 755–796 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamilton, W.R.S.: Elements of quaternions. Longmans, Green & Co., London (1866)

    Google Scholar 

  14. Morris, A.O.: On a generalized clifford algebra (ii). Q J. Math 19(1), 289–299 (1968)

    Article  MATH  Google Scholar 

  15. Wilmanski, K.: Dynamics of bodies with microstructure. Arch. Mech. Stos. 20(6), 705–744 (1968)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goddard, J.D. (2010). A Note on the Representation of Cosserat Rotation. In: Albers, B. (eds) Continuous Media with Microstructure. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11445-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11445-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11444-1

  • Online ISBN: 978-3-642-11445-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics