Skip to main content

Monitoring Myocardial Dysfunction as Part of Sepsis Management

  • Chapter
  • First Online:
Sepsis Management

Abstract

Sepsis-induced cardiac dysfunction occurs early in the course of severe sepsis. The mechanisms responsible for its development are complex and intricate. The degree of severity of septic myocardial depression is variable from patient to patient. Doppler echocardiography is the best method to make the diagnosis of cardiac dysfunction (a decrease in left ventricular ejection fraction). The transpulmonary thermodilution monitor (decrease in cardiac function index, decrease in cardiac output) and the pulmonary artery catheter (decrease in cardiac output and/or decrease in mixed venous oxygen saturation) can be used either to alert clinicians of the possibility of cardiac dysfunction or to monitor the effects of inotropic therapy. Low plasma levels of B-type natriuretic peptide levels can serve to rule out severe cardiac dysfunction. In contrast, high levels of natriuretic peptides do not allow diagnosing myocardial depression with certainty and should prompt the performance of echocardiographic examination. Administration of inotropic drugs, such as β1-agonist agents, is a matter of debate and should be carefully monitored in terms of efficacy as well as tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Peak Doppler velocity of late diastolic flow

BNP:

B-type natriuretic peptide

CFI:

Cardiac function index

cTnI:

Cardiac troponin I

cTnT:

Cardiac troponin T

E:

Peak Doppler velocity of early diastolic flow

Ea:

Early diastolic mitral annular velocity

GEDV:

Global end-diastolic volume

LVEF:

Left ventricular ejection fraction

NO:

Nitric oxide

NT-proBNP:

N terminal proBNP

PAC:

Pulmonary artery catheter

PAOP:

Pulmonary artery occlusion pressure

PEEP:

Positive end-expiratory pressure

ScvO2 :

Central venous blood oxygen saturation

SvO2 :

Mixed venous blood oxygen saturation

VTIAo:

Velocity-time integral of aortic blood flow

References

  • Abi-Gerges N, Tavernier B, Mebazaa A et al (1999) Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat. Am J Respir Crit Care Med 160:1196–1204

    PubMed  CAS  Google Scholar 

  • Ammann P, Maggiorini M, Bertel O et al (2003) Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J Am Coll Cardiol 41:2004–2009

    Article  PubMed  CAS  Google Scholar 

  • Brueckmann M, Huhle G, Lang S et al (2005) Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 112:527–534

    Article  PubMed  CAS  Google Scholar 

  • Charpentier J, Luyt CE, Fulla Y (2004) Brain natriuretic peptide: a marker of myocardial dysfunction and prognosis during severe sepsis. Crit Care Med 32:660–665

    Article  PubMed  CAS  Google Scholar 

  • Combes A, Berneau JB, Luyt CE et al (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30:1377–1383

    PubMed  Google Scholar 

  • Cunnion RE, Schaer GL, Parker MM et al (1986) The coronary circulation in human septic shock. Circulation 73:637–644

    Article  PubMed  CAS  Google Scholar 

  • Dahlström U (2004) Can natriuretic peptides be used for the diagnosis of diastolic heart failure? Eur J Heart Fail 6:281–287

    Article  PubMed  Google Scholar 

  • Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock. Crit Care Med 36:296–327

    Article  PubMed  Google Scholar 

  • Dhainaut JF, Huyghebaert MF, Monsallier JF et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–541

    Article  PubMed  CAS  Google Scholar 

  • Ferdinandy P, Danial H, Ambrus I et al (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87:241–247

    PubMed  CAS  Google Scholar 

  • Fernandes CJ Jr, Akamine N, Knobel E (1999) Cardiac troponin: a new serum marker of myocardial injury in sepsis. Intensive Care Med 25:1165–1168

    Article  PubMed  Google Scholar 

  • Gardner RS, Ozalp F, Murday AJ et al (2003) N terminal pro-brain natriuretic peptide: a new gold standard in predicting mortality in patients with advanced heart failure. Eur Heart J 24:1735–1743

    Article  PubMed  CAS  Google Scholar 

  • Gnaegi A, Feihl F, Perret C (1997) Intensive care physicians’ insufficient knowledge of right-heart catheterization at the bedside: time to act? Crit Care Med 25:213–220

    Article  PubMed  CAS  Google Scholar 

  • Iberti TJ, Fischer EP, Leibowitz AB (1990) A multicenter study of physicians’ knowledge of the pulmonary artery catheter. Pulmonary Artery Catheter Study Group. JAMA 264:2928–2932

    Article  PubMed  CAS  Google Scholar 

  • Jabot J, Monnet X, Bouchra L et al. (2009) Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Crit Care Med 37:2913–8

    Article  PubMed  Google Scholar 

  • Kumar A, Kumar A, Paladugu B et al (2007) Transforming growth factor-beta1 blocks in vitro cardiac myocyte depression induced by tumor necrosis factor-alpha, interleukin-1beta, and human septic shock serum. Crit Care Med 35:358–364

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Schupp E, Bunnell E et al (2008) Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Crit Care 12:R35

    Article  PubMed  Google Scholar 

  • Lamia B, Chemla D, Richard C et al (2005) Clinical review: interpretation of arterial pressure wave in shock states. Crit Care 9:601–606

    Article  PubMed  Google Scholar 

  • Lancel S, Tissier S, Mordon S et al (2004) Peroxynitrite decomposition catalysts prevent myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 43:2348–2358

    Article  PubMed  CAS  Google Scholar 

  • Lancel S, Joulin O, Favory R et al (2005) Ventricular myocyte caspases are directly responsible for endotoxin-induced cardiac dysfunction. Circulation 111:2596–2604

    Article  PubMed  CAS  Google Scholar 

  • Maeder M, Fehr T, Rickli H et al (2006) Sepsis-associated myocardial dysfunction: diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 129:1349–1366

    Article  PubMed  CAS  Google Scholar 

  • McLean AS, Huang SJ, Hyams S et al (2007) Prognostic values of B-type natriuretic peptide in severe sepsis and septic shock. Crit Care Med 35:1019–1026

    Article  PubMed  CAS  Google Scholar 

  • McLean AS, Huang SJ, Salter M (2008) Bench-to-bedside review: the value of cardiac biomarkers in the intensive care patient. Crit Care 12:215

    Article  PubMed  Google Scholar 

  • Metha NJ, Khan IA, Gupta V et al (2004) Cardiac troponin predicts myocardial dysfunction and adverse outcome in septic shock. Int J Cardiol 95:13–17

    Article  Google Scholar 

  • Michard F, Alaya S, Zarka V et al (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908

    Article  PubMed  Google Scholar 

  • Morelli A, De Castro S, Teboul JL et al (2005) Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 31:638–644

    Article  PubMed  Google Scholar 

  • Morita E, Yasue H, Yoshimura M et al (1993) Increased plasma levels of brain natriuretic peptide in patients with acute myocardial infarction. Circulation 88:82–91

    PubMed  CAS  Google Scholar 

  • Nagueh SF, Middleton KJ, Kopelen HA et al (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Parker MM, Shelhamer JH, Bacharach SL et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–490

    PubMed  CAS  Google Scholar 

  • Parrillo JE, Burch C, Shelhamer JH et al (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–1553

    Article  PubMed  CAS  Google Scholar 

  • Pinsky M, Vincent JL, De Smet JM (1991) Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis 143:25–31

    PubMed  CAS  Google Scholar 

  • Pirracchio R, Deye N, Lukaszewicz AC et al (2008) Impaired plasma B-type natriuretic peptide clearance in human septic shock. Crit Care Med 36:2542–2546

    Article  PubMed  CAS  Google Scholar 

  • Pottecher T, Calvat S, Dupont H et al (2006) Hemodynamic management of severe sepsis: recommendations of the French Intensive Care’ Societies (SFAR/SRLF) Consensus Conference, 13 October 2005, Paris, France. Crit Care 10:311

    Article  PubMed  Google Scholar 

  • Rabuel C, Mebazaa A (2006) Septic shock: a heart story since the 1960s. Intensive Care Med 32:799–807

    Article  PubMed  CAS  Google Scholar 

  • Ritter S, Rudiger A, Maggiorini M (2009) Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study. Crit Care 13:R133

    Article  PubMed  Google Scholar 

  • Roch A, Allardet-Servent J, Michelet P et al (2005) NH2 terminal pro-brain natriuretic peptide plasma level as an early marker of prognosis and cardiac dysfunction in septic shock patients. Crit Care Med 33:1001–1007

    Article  PubMed  CAS  Google Scholar 

  • Silverman HJ, Penaranda R, Orens JB et al (1993) Impaired beta-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 21:31–39

    Article  PubMed  CAS  Google Scholar 

  • Spies C, Haude V, Fitzner R et al (1998) Serum cardiac troponin T as a prognostic marker in early sepsis. Chest 113:1055–1063

    Article  PubMed  CAS  Google Scholar 

  • Tavernier B, Li JM, El-Omar MM et al (2001) Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB J 15:294–296

    PubMed  CAS  Google Scholar 

  • Teboul JL, Pinsky MR, Mercat A et al (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28:3631–3636

    Article  PubMed  CAS  Google Scholar 

  • Ueda S, Nishio K, Akai Y et al (2006) Prognostic value of increased plasma levels of brain natriuretic peptide in patients with septic shock. Shock 26:134–139

    Article  PubMed  CAS  Google Scholar 

  • Vanoverschelde JL, Robert AR, Gerbaux A et al (1995) Noninvasive estimation of pulmonary artery wedge pressure with Doppler transmitral flow velocity pattern in patients with known heart disease. Am J Cardiol 75:383–389

    Article  PubMed  CAS  Google Scholar 

  • Ver Elst KM, Spapen HD, Nguyen DN et al (2000) Cardiac troponin I and T are biological markers of left ventricular dysfunction in septic shock. Clin Chem 46:650–657

    PubMed  CAS  Google Scholar 

  • Vieillard-Baron A (2009) Assessment of right ventricular function. Curr Opin Crit Care 15:254–260

    Article  PubMed  Google Scholar 

  • Vieillard-Baron A, Caille V, Charron C et al (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–1706

    Article  PubMed  Google Scholar 

  • Wiener RS, Welch HG (2007) Trends in the use of the pulmonary artery catheter in the United States, 1993–2004. JAMA 298:423–429

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura M, Yasue H, Okumura K et al (1993) Different secretion patterns of atrial natriuretic peptide and brain natriuretic peptide in patients with congestive heart failure. Circulation 87:464–469

    PubMed  CAS  Google Scholar 

  • Yu CM, Sanderson JE, Shum IO (1996) Diastolic dysfunction and natriuretic peptides in systolic heart failure. Higher ANP and BNP levels are associated with the restrictive filling pattern. Eur Heart J 17:1694–1702

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Teboul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamzaoui, O., Teboul, JL. (2012). Monitoring Myocardial Dysfunction as Part of Sepsis Management. In: Rello, J., Lipman, J., Lisboa, T. (eds) Sepsis Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03519-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03519-7_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03518-0

  • Online ISBN: 978-3-642-03519-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics