Skip to main content

Assessing Renal Dysfunction in Septic Patients

  • Chapter
  • First Online:
Sepsis Management

Abstract

Both sepsis and renal dysfunction are common in critically ill patients. A consensus definition for sepsis has existed for over 20 years, and more recently renal dysfunction has also been categorized by consensus into progressive grades and termed acute kidney injury (AKI). Of patients in the intensive care unit (ICU) who develop AKI, sepsis and septic shock have been estimated to be the likely cause in 11–50% of cases (Bagshaw et al. 2007a; Oh et al. 1993; Metnitz et al. 2002; Schwilk et al. 1997; Douma et al. 1997; Uchino et al. 2005). The incidence of AKI increases with the severity of sepsis, from approximately 19% in patients with moderate sepsis, to 23% in patients with severe sepsis, and 51% in patients with septic shock (Riedemann et al. 2003; Rangel-Frausto et al. 1995). AKI in septic patients, or septic AKI, is frequently associated with other organ failures. A retrospective analysis of over 120,000 patients in Australia and New Zealand, demonstrated that patients with septic AKI had greater physiological derangements with higher simplified acute physiology score II (SAPS II) and sequential organ failure (SOFA) scores, and a greater requirement for mechanical ventilation and infusion of vasoactive drugs, than non-septic AKI patients (Bagshaw et al. 2008). In this study septic AKI was associated with significantly higher covariate adjusted mortality in ICU (OR 1.60, 95% CI 1.5–1.7) and hospital mortality (OR 1.53, 95% CI 1.46–1.60) compared with non-septic AKI (Bagshaw et al. 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bagshaw SM, Langenberg C, Bellomo R (2006) Urinary biochemistry and microscopy in septic acute renal failure: a systematic review. Am J Kidney Dis 48:695–705

    Article  PubMed  CAS  Google Scholar 

  • Bagshaw SM, Uchino S, Bellomo R et al (2007a) Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2:431–439

    Article  PubMed  Google Scholar 

  • Bagshaw SM, Langenberg C, Haase M et al (2007b) Urinary biomarkers in septic acute kidney injury. Intensive Care Med 33:1285–1296

    Article  PubMed  CAS  Google Scholar 

  • Bagshaw SM, George C, Bellomo R et al (2008a) A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients. Nephrol Dial Transplant 23:1569–1574

    Article  PubMed  Google Scholar 

  • Bagshaw SM, George C, Bellomo R et al (2008b) Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care 12:R47

    Article  PubMed  Google Scholar 

  • Bagshaw SM, Bennett M, Haase M et al (2010) Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med 36:452–461

    Article  PubMed  CAS  Google Scholar 

  • Bellomo R, Kellum JA, Ronco C (2004a) Defining acute renal failure: physiological principles. Intensive Care Med 30:33–37

    Article  PubMed  Google Scholar 

  • Bellomo R, Ronco C, Kellum JA et al (2004b) Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8:R204–R212

    Article  PubMed  Google Scholar 

  • Bone RC, Balk RA, Cerra FB et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655

    Article  PubMed  CAS  Google Scholar 

  • Brändström E, Grzegorczyk A, Jacobsson L et al (1998) GFR measurement with iohexol and 51Cr-EDTA. A comparison of the two favoured GFR markers in Europe. Nephrol Dial Transplant 13:1176–1182

    Article  PubMed  Google Scholar 

  • Brealey D, Singer M (2003) Mitochondrial dysfunction in sepsis. Curr Infect Dis Rep 5:365–371

    Article  PubMed  Google Scholar 

  • Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891

    Article  PubMed  CAS  Google Scholar 

  • Coresh J, Astor BC, McQuillan G et al (2002) Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 39:920–929

    Article  PubMed  CAS  Google Scholar 

  • Delanaye P, Lambermont B, Chapelle JP et al (2004) Plasmatic cystatin C for the estimation of glomerular filtration rate in intensive care units. Intensive Care Med 30:980–983

    Article  PubMed  Google Scholar 

  • Delanghe J (2002) Standardization of creatinine determination and its consequences for the clinician. Acta Clin Belg 57:172–175

    PubMed  CAS  Google Scholar 

  • Di Giantomasso D, May CN, Bellomo R (2003a) Norepinephrine and vital organ blood flow during experimental hyperdynamic sepsis. Intensive Care Med 29:1774–1781

    Article  PubMed  Google Scholar 

  • Di Giantomasso D, May CN, Bellomo R (2003b) Vital organ blood flow during hyperdynamic sepsis. Chest 124:1053–1059

    Article  PubMed  Google Scholar 

  • Douma CE, Redekop WK, van der Meulen JH et al (1997) Predicting mortality in intensive care patients with acute renal failure treated with dialysis. J Am Soc Nephrol 8:111–117

    PubMed  CAS  Google Scholar 

  • El-Achkar TM, Huang X, Plotkin Z et al (2006) Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol 290:F1034–F1043

    Article  PubMed  CAS  Google Scholar 

  • Filep JG (2000) Role for endogenous endothelin in the regulation of plasma volume and albumin escape during endotoxin shock in conscious rats. Br J Pharmacol 129:975–983

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Gutiérrez ME, Seller-Pérez G, Banderas-Bravo E et al (2007) Replacement of 24-h creatinine clearance by 2-h creatinine clearance in intensive care unit patients: a single-center study. Intensive Care Med 33:1900–1906

    Article  PubMed  Google Scholar 

  • Hoste EA, Lameire NH, Vanholder RC et al (2003) Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J Am Soc Nephrol 14:1022–1030

    Article  PubMed  Google Scholar 

  • Jo SK, Cha DR, Cho WY et al (2002) Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells. Nephron 91:406–415

    Article  PubMed  CAS  Google Scholar 

  • Joannidis M, Metnitz B, Bauer P et al (2009) Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 35:1692–1702

    Article  PubMed  Google Scholar 

  • Kang YH, Falk MC, Bentley TB et al (1995) Distribution and role of lipopolysaccharide in the pathogenesis of acute renal proximal tubule injury. Shock 4:441–449

    PubMed  CAS  Google Scholar 

  • Kellum JA (2008) Acute kidney injury. Crit Care Med 36:S141–S145

    Article  PubMed  Google Scholar 

  • Kim KE, Onesti G, Ramirez O et al (1969) Creatinine clearance in renal disease. A reappraisal. Br Med J 4:11–14

    Article  PubMed  CAS  Google Scholar 

  • Kohl BA, Deutschman CS (2006) The inflammatory response to surgery and trauma. Curr Opin Crit Care 12:325–332

    Article  PubMed  Google Scholar 

  • Kon V, Badr KF (1991) Biological actions and pathophysiologic significance of endothelin in the kidney. Kidney Int 40:1–12

    Article  PubMed  CAS  Google Scholar 

  • Koo DJ, Zhou M, Chaudry IH et al (2001) The role of adrenomedullin in producing differential hemodynamic responses during sepsis. J Surg Res 95:207–218

    Article  PubMed  CAS  Google Scholar 

  • Kümpers P, Hafer C, Lukasz A et al (2010) Serum neutrophil gelatinase-associated lipocalin at inception of renal replacement therapy predicts survival in critically ill patients with acute kidney injury. Crit Care 14:R9

    Article  PubMed  Google Scholar 

  • Lam M, Kaufman CE (1985) Fractional excretion of sodium as a guide to volume depletion during recovery from acute renal failure. Am J Kidney Dis 6:18–21

    PubMed  CAS  Google Scholar 

  • Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–430

    PubMed  CAS  Google Scholar 

  • Lameire N, Van Biesen W, Vanholder R (2008) Acute kidney injury. Lancet 372:1863–1865

    Article  PubMed  Google Scholar 

  • Landry DW, Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588–595

    Article  PubMed  CAS  Google Scholar 

  • Langenberg C, Bellomo R, May C et al (2005) Renal blood flow in sepsis. Crit Care 9:R363–R374

    Article  PubMed  Google Scholar 

  • Langenberg C, Bellomo R, May CN et al (2006a) Renal vascular resistance in sepsis. Nephron Physiol 104:1–11

    Article  Google Scholar 

  • Langenberg C, Wan L, Egi M et al (2006b) Renal blood flow in experimental septic acute renal failure. Kidney Int 69:1996–2002

    Article  PubMed  CAS  Google Scholar 

  • Langenberg C, Bagshaw SM, May CN et al (2008) The histopathology of septic acute kidney injury: a systematic review. Crit Care 12:R38

    Article  PubMed  Google Scholar 

  • Le Dorze M, Legrand M, Payen D et al (2009) The role of the microcirculation in acute kidney injury. Curr Opin Crit Care 15:503–508

    Article  PubMed  Google Scholar 

  • Lerolle N, Nochy D, Guérot E et al (2010) Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med 36:471–478

    Article  PubMed  Google Scholar 

  • Leverve XM (2007) Mitochondrial function and substrate availability. Crit Care Med 35:S454–S460

    Article  PubMed  CAS  Google Scholar 

  • Levey AS (1990) Measurement of renal function in chronic renal disease. Kidney Int 38:167–184

    Article  PubMed  CAS  Google Scholar 

  • Levy MM, Fink MP, Marshall JC et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 31:1250–1256

    Article  PubMed  Google Scholar 

  • Levy MM, Dellinger RP, Townsend SR et al (2010) The Surviving Sepsis Campaign: results of an international guideline-based performance improvement program targeting severe sepsis. Intensive Care Med 36:222–231

    Article  PubMed  Google Scholar 

  • Liangos O, Perianayagam MC, Vaidya VS et al (2007) Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol 18:904–912

    Article  PubMed  CAS  Google Scholar 

  • Lopes JA, Fernandes P, Jorge S et al (2008) Acute kidney injury in intensive care unit patients: a comparison between the RIFLE and the Acute Kidney Injury Network classifications. Crit Care 12:R110

    Article  PubMed  Google Scholar 

  • Mårtensson J, Bell M, Oldner A et al (2010) Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med 36(8):1333–1340, Epub 2010 Apr 16

    Article  PubMed  Google Scholar 

  • Mathiak G, Szewczyk D, Abdullah F et al (2000) An improved clinically relevant sepsis model in the conscious rat. Crit Care Med 28:1947–1952

    Article  PubMed  CAS  Google Scholar 

  • Mehta RL, Kellum JA, Shah SV et al (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed  Google Scholar 

  • Messaris E, Memos N, Chatzigianni E et al (2008) Apoptotic death of renal tubular cells in experimental sepsis. Surg Infect (Larchmt) 9:377–388

    Article  Google Scholar 

  • Messmer UK, Briner VA, Pfeilschifter J (1999) Tumor necrosis factor-alpha and lipopolysaccharide induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int 55:2322–2337

    Article  PubMed  CAS  Google Scholar 

  • Metnitz PG, Krenn CG, Steltzer H et al (2002) Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med 30:2051–2058

    Article  PubMed  Google Scholar 

  • Mori K, Nakao K (2007) Neutrophil gelatinase-associated lipocalin as the real-time indicator of active kidney damage. Kidney Int 71:967–970

    Article  PubMed  CAS  Google Scholar 

  • Musson RA, Morrison DC, Ulevitch RJ (1978) Distribution of endotoxin (lipopolysaccharide) in the tissues of lipopolysaccharide-responsive and -unresponsive mice. Infect Immun 21:448–457

    PubMed  CAS  Google Scholar 

  • Nejat M, Pickering JW, Walker RJ et al (2010) Urinary cystatin C is diagnostic of acute kidney injury and sepsis, and predicts mortality in the intensive care unit. Crit Care 14:R85

    Article  PubMed  Google Scholar 

  • Neveu H, Kleinknecht D, Brivet F et al (1996) Prognostic factors in acute renal failure due to sepsis. Results of a prospective multicentre study. The French Study Group on Acute Renal Failure. Nephrol Dial Transplant 11:293–299

    PubMed  CAS  Google Scholar 

  • Oh TE, Hutchinson R, Short S et al (1993) Verification of the Acute Physiology and Chronic Health Evaluation scoring system in a Hong Kong intensive care unit. Crit Care Med 21:698–705

    Article  PubMed  CAS  Google Scholar 

  • Ostermann M, Chang R, Riyadh ICU, Group PU (2008) Correlation between the AKI classification and outcome. Crit Care 12:R144

    Article  PubMed  Google Scholar 

  • Parikh CR, Devarajan P (2008) New biomarkers of acute kidney injury. Crit Care Med 36:S159–S165

    Article  PubMed  CAS  Google Scholar 

  • Parikh CR, Abraham E, Ancukiewicz M et al (2005) Urine IL-18 is an early diagnostic marker for acute kidney injury and predicts mortality in the intensive care unit. J Am Soc Nephrol 16:3046–3052

    Article  PubMed  CAS  Google Scholar 

  • Parrillo JE, Parker MM, Natanson C et al (1990) Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 113:227–242

    PubMed  CAS  Google Scholar 

  • Rangel-Frausto MS, Pittet D, Costigan M et al (1995) The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273:117–123

    Article  PubMed  CAS  Google Scholar 

  • Reinhart K, Bayer O, Brunkhorst F et al (2002) Markers of endothelial damage in organ dysfunction and sepsis. Crit Care Med 30:S302–S312

    Article  PubMed  CAS  Google Scholar 

  • Ricci Z, Cruz D, Ronco C (2008) The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int 73:538–546

    Article  PubMed  CAS  Google Scholar 

  • Riedemann NC, Guo RF, Ward PA (2003) The enigma of sepsis. J Clin Invest 112:460–467

    PubMed  CAS  Google Scholar 

  • Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  • Ronco C, Bellomo R (1998) Critical care nephrology. Kluwer Academic, Dordrecht

    Google Scholar 

  • Schrier RW, Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159–169

    Article  PubMed  CAS  Google Scholar 

  • Schwilk B, Wiedeck H, Stein B et al (1997) Epidemiology of acute renal failure and outcome of haemodiafiltration in intensive care. Intensive Care Med 23:1204–1211

    Article  PubMed  CAS  Google Scholar 

  • Shemesh O, Golbetz H, Kriss JP et al (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838

    Article  PubMed  CAS  Google Scholar 

  • Sladen RN, Endo E, Harrison T (1987) Two-hour versus 22-hour creatinine clearance in critically ill patients. Anesthesiology 67:1013–1016

    Article  PubMed  CAS  Google Scholar 

  • Stevens LA, Levey AS (2005) Measurement of kidney function. Med Clin North Am 89:457–473

    Article  PubMed  Google Scholar 

  • Stevens LA, Levey AS (2009) Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol 20:2305–2313

    Article  PubMed  Google Scholar 

  • Uchino S, Kellum JA, Bellomo R et al (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294:813–818

    Article  PubMed  CAS  Google Scholar 

  • Udy AA, Roberts JA, Boots RJ et al (2010) Augmented renal clearance: implications for antibacterial dosing in the critically ill. Clin Pharmacokinet 49:1–16

    Article  PubMed  CAS  Google Scholar 

  • Vaidya VS, Ramirez V, Ichimura T et al (2006) Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 290:F517–F529

    Article  PubMed  CAS  Google Scholar 

  • Vaz AJ (1983) Low fractional excretion of urine sodium in acute renal failure due to sepsis. Arch Intern Med 143:738–739

    Article  PubMed  CAS  Google Scholar 

  • Villa P, Jiménez M, Soriano MC et al (2005) Serum cystatin C concentration as a marker of acute renal dysfunction in critically ill patients. Crit Care 9:R139–R143

    Article  PubMed  Google Scholar 

  • Villazón SA, Sierra UA, López SF et al (1975) Hemodynamic patterns in shock and critically ill patients. Crit Care Med 3:215–221

    Article  PubMed  Google Scholar 

  • Waikar SS, Bonventre JV (2007) Biomarkers for the diagnosis of acute kidney injury. Curr Opin Nephrol Hypertens 16:557–564

    Article  PubMed  Google Scholar 

  • Wan L, Bellomo R, May CN (2006) The effect of normal saline resuscitation on vital organ blood flow in septic sheep. Intensive Care Med 32:1238–1242

    Article  PubMed  CAS  Google Scholar 

  • Wan L, Bagshaw SM, Langenberg C et al (2008) Pathophysiology of septic acute kidney injury: what do we really know? Crit Care Med 36:S198–S203

    Article  PubMed  Google Scholar 

  • Wang W, Jittikanont S, Falk SA et al (2003) Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure. Am J Physiol Renal Physiol 284:F532–F537

    PubMed  CAS  Google Scholar 

  • Wells M, Lipman J (1997a) Measurements of glomerular filtration in the intensive care unit are only a rough guide to renal function. S Afr J Surg 35:20–23

    PubMed  CAS  Google Scholar 

  • Wells M, Lipman J (1997b) Pitfalls in the prediction of renal function in the intensive care unit. A review. S Afr J Surg 35:16–19

    PubMed  CAS  Google Scholar 

  • Wheeler DS, Devarajan P, Ma Q et al (2008) Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med 36:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Venge P (2000) Lipocalins as biochemical markers of disease. Biochim Biophys Acta 1482:298–307

    Article  PubMed  CAS  Google Scholar 

  • Yegenaga I, Hoste E, Van Biesen W et al (2004) Clinical characteristics of patients developing ARF due to sepsis/systemic inflammatory response syndrome: results of a prospective study. Am J Kidney Dis 43:817–824

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin M. Joynt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Choi, G.Y.S., Joynt, G.M., Gomersall, C.D. (2012). Assessing Renal Dysfunction in Septic Patients. In: Rello, J., Lipman, J., Lisboa, T. (eds) Sepsis Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03519-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03519-7_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03518-0

  • Online ISBN: 978-3-642-03519-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics