Skip to main content

Humidification During Invasive Mechanical Ventilation: Hygrometric Performances and Cost of Humidification Systems

  • Chapter
  • First Online:
Humidification in the Intensive Care Unit

Abstract

The deleterious impact of dry gases on airway mucosa was described very early [1]. Abundant literature on humans and animals is available demonstrating a relationship among airway mucosal dysfunction, inflammation and atelectasis, and (1) the level of gas humidity delivered during invasive mechanical ventilation and (2) the duration of exposure to this gas [2]. An ongoing debate centers on the optimal level of inspiratory gas humidity. Several recommendations have been published on the optimal level of humidification required during invasive mechanical ventilation. Most of these publications are not recent. In general, it is recommended that the humidification systems should provide at least 30 mgH2O/l for inspiratory gases [3–6]. Many studies were published that allow us to better determine what a safe level of humidification is. If we consider as a clinical requirement to avoid obstruction of the endotracheal tube, slightly lower levels of humidity may be sufficient [7]. Few authors recommend using levels of gas humidity corresponding to the water content in the alveoli, or 44 mgH2O/l, which corresponds to 100% relative humidity at 37°C [8]. These latter requirements are not usually obtained with the humidification systems used so far [7, 9]. Until now, no study has really compared stable systems delivering 40 mgH2O/l with stable systems delivering 30 mgH2O/l. In some clinical situations, such as patients ventilated with ARDS or severe asthma, other criteria than the level of humidification should be considered, in particular to take into account the mechanical characteristics of the different humidification systems (especially the dead space). Finally, the issue of the humidification systems’ cost cannot be set aside at the time of the choice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burton JDK (1962) Effect of dry anaesthetic gases on the respiratory mucus membrane. Lancet 1:235

    Article  PubMed  CAS  Google Scholar 

  2. Williams R et al (1996) Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit Care Med 24(11):1920–1929

    Article  PubMed  CAS  Google Scholar 

  3. British Standards Institution (1970) Specifications for humidifiers for use with breathing machines. BS 4494. British Standards Institute, London

    Google Scholar 

  4. American National Standards Institute (1979) Standard for humidifiers and nebulizers for medical use. ASI Z79.9:8

    Google Scholar 

  5. International Organization of Standards (1988) Humidifiers for medical use. ISO 8185 60:14

    Google Scholar 

  6. AARC Clinical Practice Guideline (1992) Humidification during mechanical ventilation. American Association for Respiratory Care. Respir Care 37(8):887–90

    Google Scholar 

  7. Lellouche F et al (2009) Humidification performance of 48 passive airway humidifiers: comparison with manufacturer data. Chest 135(2):276–286

    Article  PubMed  Google Scholar 

  8. Ryan SN et al (2002) Energy balance in the intubated human airway is an indicator of optimal gas conditioning. Crit Care Med 30(2):355–361

    Article  PubMed  Google Scholar 

  9. Lellouche L et al (2004) Influence of ambient air and ventilator output temperature on performances of heated-wire humidifiers. Am J Respir Crit Care Med 170:1073–1079

    Article  PubMed  Google Scholar 

  10. Chamney AR (1969) Humidification requirements and techniques. Including a review of the performance of equipment in current use. Anaesthesia 24(4):602–617

    Article  PubMed  CAS  Google Scholar 

  11. Chatburn RL, Primiano FP Jr (1987) A rational basis for humidity therapy. Respir Care 32:249–254

    Google Scholar 

  12. International Organization of Standards (1997). Humidifiers for medical use. General requirements for humidification systems. ISO 8185.

    Google Scholar 

  13. Cohen IL et al (1988) Endotracheal tube occlusion associated with the use of heat and moisture exchangers in the intensive care unit. Crit Care Med 16(3):277–279

    Article  PubMed  CAS  Google Scholar 

  14. Martin C et al (1990) Heat and moisture exchangers and vaporizing humidifiers in the intensive care unit. Chest 97(1):144–149

    Article  PubMed  CAS  Google Scholar 

  15. Misset B et al (1991) Heat and moisture exchanger vs heated humidifier during long-term mechanical ventilation. A prospective randomized study. Chest 100(1):160–163

    Article  PubMed  CAS  Google Scholar 

  16. Roustan JP et al (1992) Comparison of hydrophobic heat and moisture exchanger with heated humidifier during prolonged mechanical ventilation. Intensive Care Med 18(2):97–100

    Article  PubMed  CAS  Google Scholar 

  17. Villafane MC et al (1996) Gradual reduction of endotracheal tube diameter during mechanical ventilation via different humidification devices. Anesthesiology 85(6):1341–1349

    Article  PubMed  CAS  Google Scholar 

  18. Boots RJ et al (2006) Double-heater-wire circuits and heat-and-moisture exchangers and the risk of ventilator-associated pneumonia. Crit Care Med 34(3):687–693

    Article  PubMed  Google Scholar 

  19. Boots RJ et al (1997) Clinical utility of hygroscopic heat and moisture exchangers in intensive care patients. Crit Care Med 25(10):1707–1712

    Article  PubMed  CAS  Google Scholar 

  20. Dreyfuss D et al (1995) Mechanical ventilation with heated humidifiers or heat and moisture exchangers: effects on patient colonization and incidence of nosocomial pneumonia. Am J Respir Crit Care Med 151(4):986–992

    PubMed  CAS  Google Scholar 

  21. Hurni JM et al (1997) Safety of combined heat and moisture exchanger filters in long-term mechanical ventilation. Chest 111(3):686–691

    Article  PubMed  CAS  Google Scholar 

  22. Lacherade JC et al (2005) Impact of humidification systems on ventilator-associated pneumonia: a randomized multicenter trial. Am J Respir Crit Care Med 172(10):1276–1282

    Article  PubMed  Google Scholar 

  23. Kirton OC et al (1997) A prospective, randomized comparison of an in-line heat moisture exchange filter and heated wire humidifiers: rates of ventilator-associated early-onset (community-acquired) or late-onset (hospital-acquired) pneumonia and incidence of endotracheal tube occlusion. Chest 112(4):1055–1059

    Article  PubMed  CAS  Google Scholar 

  24. Thomachot L et al (1998) Efficacy of heat and moisture exchangers after changing every 48 hours rather than 24 hours. Crit Care Med 26(3):477–481

    Article  PubMed  CAS  Google Scholar 

  25. Branson RD et al (1993) Humidification in the intensive care unit. Prospective study of a new protocol utilizing heated humidification and a hygroscopic condenser humidifier. Chest 104(6):1800–1805

    Article  PubMed  CAS  Google Scholar 

  26. Jaber S et al (2004) Long-term effects of different humidification systems on endotracheal tube patency: evaluation by the acoustic reflection method. Anesthesiology 100(4):782–788

    Article  PubMed  Google Scholar 

  27. Thomachot L et al (2002) Randomized clinical trial of extended use of a hydrophobic condenser humidifier: 1 vs. 7 days. Crit Care Med 30(1):232–237

    Article  PubMed  Google Scholar 

  28. Thomachot L et al (1999) Do the components of heat and moisture exchanger filters affect their humidifying efficacy and the incidence of nosocomial pneumonia? Crit Care Med 27(5):923–928

    Article  PubMed  CAS  Google Scholar 

  29. Thomachot L et al (1998) Comparing two heat and moisture exchangers, one hydrophobic and one hygroscopic, on humidifying efficacy and the rate of nosocomial pneumonia. Chest 114(5):1383–1389

    Article  PubMed  CAS  Google Scholar 

  30. Kollef MH et al (1998) A randomized clinical trial comparing an extended-use hygroscopic condenser humidifier with heated-water humidification in mechanically ventilated patients. Chest 113(3):759–767

    Article  PubMed  CAS  Google Scholar 

  31. Rathgeber J et al (2002) Evaluation of heated humidifiers for use on intubated patients: a comparative study of humidifying efficiency, flow resistance, and alarm functions using a lung model. Intensive Care Med 28:731–739

    Article  PubMed  Google Scholar 

  32. Thiery G et al (2003) Heat and moisture exchangers in mechanically ventilated intensive care unit patients: a plea for an independent assessment of their performance. Crit Care Med 31(3):699–704

    Article  PubMed  Google Scholar 

  33. Lellouche F, et al (2003) Influence of ambient air temperature on performances of different generations of heated humidifiers. Intensive Care Med: p. A

    Google Scholar 

  34. Lellouche F, Lyazidi A, and L. Brochard (2007) Improvement of humidification performances with new heated humidifiers. Am J Respir Crit Care Med. 175: p. A

    Google Scholar 

  35. Schumann S et al (2007) Moisturizing and mechanical characteristics of a new counter-flow type heated humidifier. Br J Anaesth 98(4):531–538

    Article  PubMed  CAS  Google Scholar 

  36. Craven DE et al (1982) Contamination of mechanical ventilators with tubing changes every 24 or 48 hours. N Engl J Med 306(25):1505–1509

    Article  PubMed  CAS  Google Scholar 

  37. Ricard JD et al (2003) New heated breathing circuits do not prevent condensation and contamination of ventilator circuits with heated humidifiers. Am J Respir Crit Care Med 167:A861

    Article  Google Scholar 

  38. Lellouche L et al (2003) Advantages and drawbacks of a heated humidifier with compensation of under-humidification. Am J Respir Crit Care Med 167(7):A909

    Google Scholar 

  39. Qader S et al (2002) Influence de la température et de l’humidité du gaz sur la mesure du volume courant expiré. Reanimation 11:141s

    Google Scholar 

  40. Ricard JD et al (2002) Physicians’ attitude to use heat and moisture exchangers or heated humidifiers: a Franco-Canadian survey. Intensive Care Med 28(6):719–725

    Article  PubMed  Google Scholar 

  41. Burns KE et al (2009) Weaning critically ill adults from invasive mechanical ventilation: a national survey. Can J Anaesth 56(8):567–576

    Article  PubMed  Google Scholar 

  42. Mapleson WW, Morgan JG, Hillard EK (1963) Assessment of condenser-humidifiers with special reference to a multiplegauze model. Br Med J 1(5326):300–305

    Article  PubMed  CAS  Google Scholar 

  43. Walley RV (1956) Humidifier for use with tracheotomy and positive-pressure respiration. Lancet 270(6926):781–782

    Article  PubMed  CAS  Google Scholar 

  44. Hingorani BK (1965) The resistance to airflow of tracheostomy tubes, connections, and heat and moisture exchangers. Br J Anaesth 37:454–463

    Article  PubMed  CAS  Google Scholar 

  45. Steward DJ (1976) A disposable condenser humidifier for use during anaesthesia. Can Anaesth Soc J 23(2):191–195

    Article  PubMed  CAS  Google Scholar 

  46. Boisson C et al (1999) Changing a hydrophobic heat and moisture exchanger after 48 hours rather than 24 hours: a clinical and microbiological evaluation. Intensive Care Med 25(11):1237–1243

    Article  PubMed  CAS  Google Scholar 

  47. Kapadia FN (2001) Factors associated with blocked tracheal tubes. Intensive Care Med 27(10):1679–1681

    Article  PubMed  CAS  Google Scholar 

  48. Kapadia FN et al (2001) Changing patterns of airway accidents in intubated ICU patients. Intensive Care Med 27(1):296–300

    Article  PubMed  CAS  Google Scholar 

  49. Lellouche F et al (2003) Impact of ambient air temperature on a new active HME and on standard HMES: bench evaluation. Intensive Care Med 29:S169

    Google Scholar 

  50. Croci M, Elena A, Solca M (1993) Performance of a hydrophobic heat and moisture exchanger at different ambient temperatures. Intensive Care Med 19(6):351–352

    Article  PubMed  CAS  Google Scholar 

  51. Lellouche F et al (2006) Under-humidification and over-humidification during moderate induced hypothermia with usual devices. Intensive Care Med 32(7):1014–1021

    Article  PubMed  Google Scholar 

  52. Dery R (1973) The evolution of heat and moisture in the respiratory tract during anesthesia with a nonrebreathing system. Can Anaesth Soc J 20:296–309

    Article  PubMed  CAS  Google Scholar 

  53. Martin C et al (1992) Performance evaluation of three vaporizing humidifiers and two heat and moisture exchangers in patients with minute ventilation  >  10 L/min. Chest 102(5):1347–1350

    Article  PubMed  CAS  Google Scholar 

  54. Martin C et al (1995) Comparing two heat and moisture exchangers with one vaporizing humidifier in patients with minute ventilation greater than 10 L/min. Chest 107(5):1411–1415

    Article  PubMed  CAS  Google Scholar 

  55. Nakagawa NK et al (2000) Effects of a heat and moisture exchanger and a heated humidifier on respiratory mucus in patients undergoing mechanical ventilation. Crit Care Med 28(2):312–317

    Article  PubMed  CAS  Google Scholar 

  56. Lellouche F et al (2004) Under-humidification of inspired gas with HME during induced hypothermia. Intensive Care Med 30(Suppl 1):S 201

    Google Scholar 

  57. Ricard JD et al (2000) Efficiency and safety of mechanical ventilation with a heat and moisture exchanger changed only once a week. Am J Respir Crit Care Med 161(1):104–109

    PubMed  CAS  Google Scholar 

  58. Davis K Jr et al (2000) Prolonged use of heat and moisture exchangers does not affect device efficiency or frequency rate of nosocomial pneumonia. Crit Care Med 28(5):1412–1418

    Article  PubMed  Google Scholar 

  59. Kapadia F et al (1992) An active heat and moisture exchanger. Br J Anaesth 69(6):640–642

    Article  PubMed  CAS  Google Scholar 

  60. Thomachot L et al (2002) The combination of a heat and moisture exchanger and a Booster: a clinical and bacteriological evaluation over 96 h. Intensive Care Med 28(2):147–153

    Article  PubMed  CAS  Google Scholar 

  61. Larsson A, Gustafsson A, Svanborg L (2000) A new device for 100 per cent humidification of inspired air. Crit Care 4(1):54–60

    Article  PubMed  CAS  Google Scholar 

  62. Chiumello D et al (2004) In vitro and in vivo evaluation of a new active heat moisture exchanger. Crit Care 8(5):R281–R288

    Article  PubMed  Google Scholar 

  63. Ploysongsang Y et al (1988) Pressure flow characteristics of commonly used heat-moisture exchangers. Am Rev Respir Dis 138(3):675–678

    PubMed  CAS  Google Scholar 

  64. Manthous CA, Schmidt GA (1994) Resistive pressure of a condenser humidifier in mechanically ventilated patients. Crit Care Med 22(11):1792–1795

    PubMed  CAS  Google Scholar 

  65. Lucato JJ et al (2005) Evaluation of resistance in 8 different heat-and-moisture exchangers: effects of saturation and flow rate/profile. Respir Care 50(5):636–643

    PubMed  Google Scholar 

  66. Branson R, Davis J (1996) Evaluation of 21 passive humidifiers according to the ISO 9360 standard: moisture output, dead space, and flow resistance. Respir Care 41:736–743

    Google Scholar 

  67. Lellouche F et al (2002) Effect of the humidification device on the work of breathing during noninvasive ventilation. Intensive Care Med 28(11):1582–1589

    Article  PubMed  Google Scholar 

  68. Girault C et al (2003) Mechanical effects of airway humidification devices in difficult to wean patients. Crit Care Med 31(5):1306–1311

    Article  PubMed  Google Scholar 

  69. Iotti GA, Olivei MC, Braschi A (1999) Mechanical effects of heat-moisture exchangers in ventilated patients. Crit Care 3(5):R77–R82

    Article  PubMed  CAS  Google Scholar 

  70. Iotti GA et al (1997) Unfavorable mechanical effects of heat and moisture exchangers in ventilated patients. Intensive Care Med 23:399–405

    Article  PubMed  CAS  Google Scholar 

  71. Le Bourdelles G et al (1996) Comparison of the effects of heat and moisture exchangers and heated humidifiers on ventilation and gas exchange during weaning trial from mechanical ventilation. Chest 110:1294–1298

    Article  PubMed  Google Scholar 

  72. Pelosi P et al (1996) Effects of heat and moisture exchangers on minute ventilation, ventilatory drive, and work of breathing during pressure-support ventilation in acute respiratory failure. Crit Care Med 24:1184–1188

    Article  PubMed  CAS  Google Scholar 

  73. Campbell RS et al (2000) The effects of passive humidifier dead space on respiratory variables in paralyzed and spontaneously breathing patients. Respir Care 45(3):306–312

    PubMed  CAS  Google Scholar 

  74. Hinkson CR et al (2006) The effects of apparatus dead space on P(aCO2) in patients receiving lung-protective ventilation. Respir Care 51(10):1140–1144

    PubMed  Google Scholar 

  75. Moran I et al (2006) Heat and moisture exchangers and heated humidifiers in acute lung injury/acute respiratory distress syndrome patients. Effects on respiratory mechanics and gas exchange. Intensive Care Med 32(4):524–531

    Article  PubMed  Google Scholar 

  76. Prat G et al (2003) Influence of the humidification device during acute respiratory distress syndrome. Intensive Care Med 29:2211–2215

    Article  PubMed  Google Scholar 

  77. Prin S et al (2002) Ability and safety of a heated humidifier to control hypercapnic acidosis in severe ARDS. Intensive Care Med 28:1756–1760

    Article  PubMed  Google Scholar 

  78. Richecoeur J et al (1999) Expiratory washout versus optimization of mechanical ventilation during permissive hypercapnia in patients with severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160(1):77–85

    PubMed  CAS  Google Scholar 

  79. Hilbert G (2003) Difficult to wean chronic obstructive pulmonary disease patients: avoid heat and moisture exchangers? Crit Care Med 31(5):1580–1581

    Article  PubMed  Google Scholar 

  80. Djedaini K et al (1995) Changing heat and moisture exchangers every 48 hours rather than 24 hours does not affect their efficacy and the incidence of nosocomial pneumonia. Am J Respir Crit Care Med 152(5 Pt 1):1562–1569

    PubMed  CAS  Google Scholar 

  81. Markowicz P et al (2000) Safety, efficacy, and cost-effectiveness of mechanical ventilation with humidifying filters changed every 48 hours: a prospective, randomized study. Crit Care Med 28(3):665–671

    Article  PubMed  CAS  Google Scholar 

  82. Branson R, Davis J, Brown R (1996) Comparison of three humidification techniques during mechanical ventilation: patient selection, cost, and infection considerations. Respir Care 41:809–816

    Google Scholar 

  83. Dreyfuss D et al (1991) Prospective study of nosocomial pneumonia and of patient and circuit colonization during mechanical ventilation with circuit changes every 48 hours versus no change. Am Rev Respir Dis 143(4 Pt 1):738–743

    PubMed  CAS  Google Scholar 

  84. Fink JB et al (1998) Extending ventilator circuit change interval beyond 2 days reduces the likelihood of ventilator-associated pneumonia. Chest 113(2):405–411

    Article  PubMed  CAS  Google Scholar 

  85. Hess D et al (1995) Weekly ventilator circuit changes. A strategy to reduce costs without affecting pneumonia rates. Anesthesiology 82(4):903–911

    Article  PubMed  CAS  Google Scholar 

  86. Kollef MH et al (1995) Mechanical ventilation with or without 7-day circuit changes. A randomized controlled trial. Ann Intern Med 123(3):168–174

    PubMed  CAS  Google Scholar 

  87. Long MN et al (1996) Prospective, randomized study of ventilator-associated pneumonia in patients with one versus three ventilator circuit changes per week. Infect Control Hosp Epidemiol 17(1):14–19

    Article  PubMed  CAS  Google Scholar 

  88. Daumal F et al (1999) Changing heat and moisture exchangers every 48 hours does not increase the incidence of nosocomial pneumonia. Infect Control Hosp Epidemiol 20(5):347–349

    Article  PubMed  CAS  Google Scholar 

  89. Boyer A et al (2003) Long-term mechanical ventilation with hygroscopic heat and moisture exchangers used for 48 hours: a prospective clinical, hygrometric, and bacteriologic study. Crit Care Med 31(3):823–829

    Article  PubMed  Google Scholar 

  90. Branson R (1999) Humidification for patients with artificial airways. Respir Care 44(6):630–641

    Google Scholar 

  91. Memish Z et al (2001) A randomized clinical trial to compare the effects of a heat and moisture exchanger with a heated humidifying system on the occurrence rate of ventilator-associated pneumonia. Am J Infect Control 29:301–305

    Article  PubMed  CAS  Google Scholar 

  92. Lellouche F et al (2002) Influence of ambient and ventilator output temperatures on performance of new heated humidifiers. Am J Respir Crit Care Med 165:A788

    Google Scholar 

  93. Williams RB (1998) The effects of excessive humidity. Respir Care Clin N Am 4(2):215–228

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lellouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lellouche, F. (2012). Humidification During Invasive Mechanical Ventilation: Hygrometric Performances and Cost of Humidification Systems. In: Esquinas, A. (eds) Humidification in the Intensive Care Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02974-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02974-5_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02973-8

  • Online ISBN: 978-3-642-02974-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics