Skip to main content

Abstract

Recently, multisymplectic discretizations have been drawing much attention and, therefore, have become the vigorous component of the structure-preserving algorithms. In this chapter, we systematically develop what our research group has achieved in the field of multisymplectic discretizations. Some very interesting new issues arising in this field are also given. Multisymplectic and variational integrators are studied from a comparative point of view. The implementation issues of multisymplectic integrators are discussed, and composition methods to construct higher order multisymplectic integrators are presented. The equivalence of variational integrators to multisymplectic integrators is proved. Several generalizations are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. U.M. Ascher and R.I. McLachlan: Multisymplectic box schemes and the Korteweg-de Vries equation. Appl. Numer. Math., 39:55–269, (2004).

    MathSciNet  Google Scholar 

  2. D.N. Arnold: Differential complexes and numerical stability. Plenary address delivered at ICM 2002. Beijing, China, (2002).

    Google Scholar 

  3. T. J. Bridges and S. Reich: Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Physics Letters A, 284:184–193, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  4. T.J. Bridges and S. Reich: Multi-symplectic spectral discretizations for the Zakharov-Kuznetsov and shallow water equations. Physica D, 152:491–504, (2001).

    Article  MathSciNet  Google Scholar 

  5. T. J. Bridges and S. Reich: Numerical methods for Hamiltonian PDEs. J. Phys. A: Math. Gen., 39:5287–5320, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. T. J. Bridges: Multi-symplectic structures and wave propagation. Math. Proc. Cam. Phil. Soc., 121:147–190, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  7. T. J. Bridges: Canonical multisymplectic structure on the total exterior algebra bundle. Proc. R. Soc. Lond. A, 462:1531–1551, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. B. Chen, H.Y. Guo, and K. Wu: Total variation in Hamiltonian formalism and symplectic-energy integrators. J. of Math. Phys., 44:1688–1702, (2003).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. B. Chen: Total variation in discrete multisymplectic field theory and multisymplectic energy momentum integrators. Letters in Mathematical Physics, 51:63–73, (2002).

    Article  Google Scholar 

  10. J. B. Chen: Multisymplectic geometry, local conservation laws and a multisymplectic integrator for the Zakharov-Kuznetsov equation. Letters in Mathematical Physics, 63:115–124, (2003).

    Article  MATH  Google Scholar 

  11. J. B. Chen: Multisymplectic geometry for the seismic wave equation. Commun. Theor. Phys., 41:561–566, (2004).

    MATH  Google Scholar 

  12. J. B. Chen: Multisymplectic Hamiltonian formulation for a one-way seismic wave equation of high order approximation. Chin Phys. Lett., 21:37–39, (2004).

    Article  Google Scholar 

  13. J. B. Chen: Multisymplectic geometry, local conservation laws and Fourier pseudospectral discretization for the “good” Boussinesq equation. Applied Mathematics and Computation, 161:55–67, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. B. Chen: A multisymplectic integrator for the periodic nonlinear Schrödinger equation. Applied Mathematics and Computation, 170:1394–1417, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. B. Chen: Variational formulation for multisymplectic Hamiltonian systems. Letters in Mathematical Physics, 71:243–253, (2005).

    Article  MATH  Google Scholar 

  16. J. B. Chen: A multisymplectic variational formulation for the nonlinear elastic wave equation. Chin Phys. Lett., 23(2):320–323, (2006).

    Article  Google Scholar 

  17. J. B. Chen: Symplectic and multisymplectic Fourier pseudospectral discretization for the Klein-Gordon equation. Letters in Mathematical Physics, 75:293–305, (2006).

    Article  MATH  Google Scholar 

  18. J. B. Chen: High order time discretization in seismic modeling. Geophysics, 72(5):SM115–SM122, (2007).

    Article  Google Scholar 

  19. J. B. Chen: Modeling the scalar wave equation with Nyströn methods. Geophysics, 71(5):T158, (2007).

    Google Scholar 

  20. J. B. Chen: A multisymplectic pseudospectral method for seismic modeling. Applied Mathematics and Computation, 186:1612–1616, (2007).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. B. Chen and M. Z. Qin: Multisymplectic fourier pseudospectral method for the nonlinear Schrödinger equation. Electronic Transactions on Numerical Analysis, 12:193–204, (2001).

    MathSciNet  MATH  Google Scholar 

  22. J.-B. Chen and M. Z. Qin. A multisymplectic variational integrator for the nonlinear Schröodinger equation. Numer. Meth. Part. Diff. Eq., 18:523–536, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. B. Chen and M. Z. Qin: Multisymplectic composition integrators of high order. J. Comput. Math., 21(5):647–656, (2003).

    MathSciNet  MATH  Google Scholar 

  24. J. B. Chen, M. Z. Qin, and Y. F. Tang: Symplectic and multisymplectic methods for the nonlinear Schrödinger equation. Computers Math. Applic., 43:1095–1106, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Cai, Y. S. Wang, and Z. H. Qiao: Multisymplectic Preissman scheme for the time-domain Maxwell’s equations. J. of Math. Phys., 50:033510, (2009).

    Article  MathSciNet  Google Scholar 

  26. J. X. Cai, Y.S. Wang, and Z.H. Qiao: Multisymplectic Preissman scheme for the time-domain Maxwell’s equations. J. of Math. Phys., 50:033510, (2009).

    Article  MathSciNet  Google Scholar 

  27. J. X. Cai, Y.S. Wang, B. Wang, and B. Jiang: New multisymplectic self-adjoint scheme and its composition for time-domain Maxwell’s equations. J. of Math. Phys., 47:123508, (2006).

    Article  MathSciNet  Google Scholar 

  28. M. L. Dahlby: Geometrical integration of nonlinear wave equations. Master’s thesis, Norwegian University, NTNU, Trondheim, (2007).

    Google Scholar 

  29. K. Feng: On difference schemes and symplectic geometry. In K. Feng, editor, Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, pages 42–58. Science Press, Beijing, (1985).

    Google Scholar 

  30. K. Feng and M. Z. Qin: The symplectic methods for the computation of Hamiltonian equations. In Y. L. Zhu and B. Y. Guo, editors, Numerical Methods for Partial Differential Equations, Lecture Notes in Mathematics 1297, pages 1–37. Springer, Berlin, (1987).

    Chapter  Google Scholar 

  31. P.L. GARCIA: The Poincare-Cartan invariant in the calculus of variations symposia mathematica. In in Convegno di Geometria Simplettica e Fisica Mathmatica XIV, pages 219–243. Academic Press, London, (1973).

    Google Scholar 

  32. H.Y. Guo, X.M. Ji, Y.Q. Li, and K. Wu: symplectic, multisymplectic structurepreserving in simple finite element method, Preprint arXiv: hep-th/0104151. (2004).

    Google Scholar 

  33. R. Hiptmair: Finite elements in computational electromagnetism. Acta Numerica, 11:237–339, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Hong and C. Li: Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. of Comp. Phys., 211:448–472, (2004).

    Article  MathSciNet  Google Scholar 

  35. [HLHKA06] J. L. Hong, Y. Liu, H. Munthe-Kass, and Zanna A: On a multisymplectic scheme for Schrödinger equations with variable coefficients. Appl. Numer. Math., 56:816–843, (2006).

    Article  Google Scholar 

  36. L. Y Huang, W. P. Zeng, and M.Z. Qin: A new multi-symplectic scheme for nonlinear “good“ Boussinesq equation. J. Comput. Math., 21:703–714, (2003).

    MathSciNet  MATH  Google Scholar 

  37. B. Jiang, Y.S. Wang, and Cai J.X: New multisymplectic scheme for generalized Kadomtsev-Petviashvili equation. J. of Math. Phys., 47:083503, (2006).

    Google Scholar 

  38. L. H. Kong, R. X. Liu, and Z.L. Xu: Numerical simulation interaction between Schrödinger equation, and Klein-Gorden field by multi-symplecticic methods. Applied Mathematics and Computation, 181:342–350, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  39. J. L. Lagrange: Mécanique Analytique Blanchard, Paris, 5th edition, vol. 1, (1965).

    MATH  Google Scholar 

  40. T. D. Lee: Can time be a discrete dynamical variable? Phys.Lett.B, 122:217–220, (1982).

    Google Scholar 

  41. T. D. Lee: Difference equations and conservation laws. J. Stat. Phys., 46:843–860, (1987).

    Article  Google Scholar 

  42. C.W. Li and M.Z. Qin: A symplectic difference scheme for the infinite dimensional Hamiltonian system. J. Comput. Appl. Math, 6:164–174, (1988).

    MathSciNet  MATH  Google Scholar 

  43. T. T. Liu and M. Z. Qin: Multisymplectic geometry and multisymplectic Preissman scheme for the KP equation. J. of Math. Phys., 43:4060–4077, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  44. X. S. Liu, Y.Y. Qi, J. F. He, and P. Z. Ding: Recent progress in symplectic algorithms for use in quantum systems. Communications in Computational Physics, 2(1):1–53, (2007).

    MathSciNet  Google Scholar 

  45. K.W. Morton and D.F. Mayers: Numerical Solution of Partial Differential Equations: an introduction. Cambridge University Press, Cambridge, Second edition, (2005).

    Book  MATH  Google Scholar 

  46. J. E. Marsden, G.P. Patrick, and S. Shloller: Multi-symplectic geometry, variational integrators, and nonlinear PDEs. Communications in Mathematical Physics, 199:351–395, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  47. J. E. Marsden, S. Pekarsky, S. Shkoller, and M. West: Variational methods, multisymplectic geometry and continuum mechanics. J.Geom. Phys., 38:253–284, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  48. P.J. Olver: Applications of Lie Groups to Differential Equations. Springer, New York, (1986).

    Book  MATH  Google Scholar 

  49. M. Z. Qin: A symplectic schemes for the Hamiltonian equations. J. Comput. Math., 5:203–209, (1987).

    MathSciNet  MATH  Google Scholar 

  50. M. Z. Qin: Multi-stage symplectic schemes of two kinds of Hamiltonian systems of wave equations. Computers Math. Applic., 19:51–62, (1990).

    MATH  Google Scholar 

  51. M. Z. Qin: A symplectic schemes for the PDEs. AMS/IP studies in Advanced Mathemateics, 5:349–354, (1997).

    Google Scholar 

  52. M. Z. Qin and W. J. Zhu: Construction of higher order symplectic schemes by composition. Computing, 47:309–321, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Z. Qin and W. J. Zhu: Construction of symplectic scheme for wave equation via hyperbolic functions sinh(x), cosh(x) and tanh(x). Computers Math. Applic., 26:1–11, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Reich: Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J. of Comp. Phys., 157:473–499, (2000).

    Article  MATH  Google Scholar 

  55. J. Q. Sun, W. Hua, and M. Z. Qin: New conservation scheme for the nonlinear Schrodinger system. Applied Mathematics and Computation, 177:446–451, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  56. J. Q. Sun, Z. Q. Ma, and M. Z. Qin: RKMK method of solving non-damping LL equations for ferromagnet chain equations. Applied Mathematics and Computation, 157:407–424, (2004).

    Article  MathSciNet  MATH  Google Scholar 

  57. J. Q. Sun, Z. Q. Ma, and M. Z. Qin: Simulation of envelope Rossby solution in pair of cubic Schrodinger equations. Applied Mathematics and Computation, 183:946-952, (2006).

    Google Scholar 

  58. J.C. Simo, N. Tarnow, and K.K. Wong: Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Methods Appl. Mech. Engrg., 100:63–116, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  59. Y. J. Sun and M.Z. Qin: Construction of multisymplectic schemes of any finite order for modified wave equations. J. of Math. Phys., 41:7854–7868, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  60. H. L. Su and M. Z. Qin: Multisymplectic Birkhoffian structure for PDEs with dissipation terms, arxiv:math.na 0302299, (2001).

    Google Scholar 

  61. H. Su and M. Z. Qin: Symplectic schemes for Birkhoffian system. Technical Report arXiv: math-ph/0301001, (2003).

    Google Scholar 

  62. Y. J. Sun and M. Z. Qin: A multi-symplectic schemes for RLW eqution. J. Comput. Math., 22:611–621, (2004).

    MathSciNet  MATH  Google Scholar 

  63. H. Su and M. Z. Qin: Multisymplectic geometry method for Maxwell’s equations and multisymplectic scheme. Technical Report arXiv. org math-ph/0302058, (2005).

    Google Scholar 

  64. J. Q. Sun, M.Z. Qin, and T.T. Liu: Total variation and multisymplectic structure for the CNLS system. Commun.Theor. Phys., 46(2):966–975, (2006).

    MathSciNet  Google Scholar 

  65. H. L. Su, M.Z. Qin, and R. Scherer: Multisymplectic geometry method for Maxwell’s equations and multisymplectic scheme. Inter. J of Pure and Applied Math, 34(1):1–17, (2007).

    MathSciNet  MATH  Google Scholar 

  66. J. Q. Sun, M. Z. Qin, H. Wei, and D. G. Dong: Numerical simulation of collision behavior of optical solitons in birefingent fibres. Commun Nonlinear Science and Numerical Simulation, 14:1259–1266, (2009).

    Article  MathSciNet  MATH  Google Scholar 

  67. H. L. Su, M. Z. Qin, Y. S. Wang, and R. Scherer: Multisymplectic Birkhoffian structure for PDEs with dissipation terms. Preprint No:2, Karlsruhe University, (2008).

    Google Scholar 

  68. A. Stern, Y. Tong, M. Desbrun, and J.E. Marsden: Electomagnetism with variational integration and discretedifferential forms, arXiv:0707.4470v2, (2007).

    Google Scholar 

  69. G. Strang: On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5:506–517, (1968).

    Article  MathSciNet  MATH  Google Scholar 

  70. M. Struwe: Variational Methods Application to nonlinear PDEs and Hamiltonian systems, volume 34 of A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, Second edition, (1996).

    Google Scholar 

  71. M. Suzuki: General theory of higher-order decomposition of exponential operators and symplectic integrators. Physics Letters A, 165:387–395, (1992).

    Article  MathSciNet  Google Scholar 

  72. Y.M. Tian and M.Z. Qin: Explicit symplectic schemes for investigating the evolution of vortices in a rovating Bose-Einstein condensate. Comput. Phys. Comm., 155:132–143, (2003).

    Article  Google Scholar 

  73. Y.M. Tian, M.Z. Qin, Y. M. Zhang, and T. Ma: The multisymplectic method for Gross-Pitaevskii equation. Comput. Phys. Comm., 176:449–458, (2008).

    Article  MathSciNet  Google Scholar 

  74. J. Wisdom, M. Holman, and J. Touma: Symplectic Correctors. In Jerrold E. Marsden, George W. Patrick, and William F. Shadwick, editors, Integration Algorithms and Classical Mechanics, volume 10 of Fields Institute Communications, pages 217–244. Fields Institute, American Mathematical Society, July (1996).

    Google Scholar 

  75. Y. S. Wang and M. Z. Qin: Multisymplectic geometry and multisymplectic scheme for the nonlinear Klein-Gordon equation. J. of Phys.soc. of Japan, 70:653–661, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  76. Y.S. Wang, B. Wang, and M. Z. Qin: Local structure-preserving algorithms for partial differential equation. Science in China (series A), 51(11):2115–2136, (2008).

    Article  MathSciNet  MATH  Google Scholar 

  77. H. Yoshida: Construction of higher order symplectic integrators. Physics Letters A, 150:262–268, (1990).

    Article  MathSciNet  Google Scholar 

  78. M. Q. Zhang: Explicit unitary schemes to solve quantum operator equations of motion. J. Stat. Phys., 65(3/4), (1991).

    Google Scholar 

  79. M. Q. Zhang: Algorithms that preserve the volume amplification factor for linear systems. Appl. Math. Lett., 6(3):59–61, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Q. Zhang: Computation of n-body problem by 2-body problems. Physics Letters A, 197:255–260, (1993).

    Article  Google Scholar 

  81. M. Q. Zhang and M. Z. Qin: Explicit symplectic schemes to solve vortex systems. Comp. & Math. with Applic., 26(5):51, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  82. W. Zhu and M. Qin: Application of higer order self-adjoint schemes of PDEs. Computers Math. Applic., 25(12):31–38, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  83. P. F. Zhao and M. Z. Qin: Multisymplectic geometry and multisymplectic Preissman scheme for the KdV equation. J. Phys. A: Math. Gen., 33:3613–3626, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  84. H.P. Zhu and J.K. Wu: Generalized canonical transformations and symplectic algorithm of the autonomous Birkhoffian systems. Progr. Natur. Sci., 9:820–828, (1999).

    MathSciNet  Google Scholar 

  85. W. Zhu, X. Zhao, and Y. Tang: Numerical methods with a high order of accuracy applied in the quantum system. J. Chem. Phys., 104(6):2275–2286, (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feng, K., Qin, M. (2010). Multisymplectic and Variational Integrators. In: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01777-3_17

Download citation

Publish with us

Policies and ethics