Skip to main content
Log in

Construction of higher order symplectic schemes by composition

Aufbau von symplektischen Verfahren höherer Ordnung durch Zusammensetzung

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper we will introduce the concept of adjoint methods and some properties of them. We will show that there is a self-adjoint scheme of even order corresponding to every method. Using the self-adjoint schemes with lower order, we can construct higher order schemes by “composing” a method, and this constructing process can be continued to get arbitrary even order schemes. The “composing” method presented here can be used to non-symplectic schemes as well as symplectic ones.

Zusammenfassung

In dieser Arbeit führen wir den Begriff des adjungierten Verfahrens und einige seiner Eigenschaften ein. Zu jedem Verfahren gibt es ein selbst-adjungiertes Verfahren gerader Ordnung. Aus selbst-adjungierten Verfahren niedriger Ordnung können wir solche höherer Ordnung zusammensetzen, und dieser Konstruktionsprozeß kann bis zu beliebigen geraden Ordnungen fortgesetzt werden. Dieser Konstruktionsprozeß kann auch auf nicht-symplektische Verfahren angewandt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feng, Kang: Formal power series and numerical methods for differential equations, Preprint, Acad. Sin. Comp. Ctr., 1991.

  2. Haruo, Yoshida: Construction of higher order symplectic integrators. Phys. Letters A150 (12), 262–268 (1990).

    Google Scholar 

  3. Hairer, E., Norsett, S. P., Wanner, G.: Solving ordinary differential equations; Non-stiff problems. Berlin, Heidelberg, New York, Tokyo: Springer 1987.

    Google Scholar 

  4. V. I. Arnold: Mathematical methods of classical machanics. Berlin, Heidelberg, New York, Tokyo: Springer 208–212 (1978).

    Google Scholar 

  5. Stanly Steinberg: Lie series and nonlinear ordinary differential equations. J. Math. Anal. Appl.101 (1), 39–63 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  6. Alex J. Dragt, John M. Finn: Lie series and invariant functions for analytic symplectic ways. J. Math. Physics17 (12), 2215 (1976).

    Article  MathSciNet  Google Scholar 

  7. J. C. Butcher: Implicit Runge-Kutta processes. Math. Comp.,18 (85), 50–64 (1964).

    MATH  MathSciNet  Google Scholar 

  8. Feng Kang: On difference schemes and symplectic geometry. Proceeding of the 1984 Beijing Symposium on differential geometry and differential equation — computation of partial differential equations Feng Kang, (ed.) Beijing: Science Press, 42–45 (1985).

    Google Scholar 

  9. Feng Kang: Difference schemes for hamiltonian formalism and symplectic geometry. J. Comput. Math.4 (3), 279–289 (1986).

    MathSciNet  Google Scholar 

  10. Feng Kang, Qin Meng-Zhao: The symplectic methods for the computation of Hamiltonian equations. Proc. of 1st Chinese Conf. on Numerical Methods of PDE's, Mathematics,1297, 1–37, Zhu You-lan, Guo Ben-yu, (eds.) Berlin, 1987. Heidelberg, New York, Tokyo: Springer 1987.

    Google Scholar 

  11. F. Neri: Lie algebras and canonical integration. Department of Physics, University of Maryland College Park, MD. 20742.

  12. Feng Kang, Qin Meng-Zhao: Hamiltonian algorithms for Hamiltonian systems and a comparative Numerical Study, to appear in Computer Physics Communications, 1991.

  13. Feng Kang: The Hamiltonian way for computing Hamiltonian dynamics, Applied and Industrial Mathematics, ed. R. Spigler, Kluwer Academic publishers, 1991.

  14. Qin Meng-Zao, Zhu Wen-Jie, Zhang Mei-Qing: Construction of a three-state difference scheme for ordinary differential equations (preprint 1990), Computing Center, AcademiaSinica, Beijing.

    Google Scholar 

  15. Qin Meng-Zhao, Wan Dao-Liu, Zhang Mei-Qing: Explicit symplectic difference schemes for separable Hamiltonian system, J. Comput. Math. 9:3, 211–221 (1991).

    MathSciNet  Google Scholar 

  16. R. D. Ruth: A canonical integration technique. IEEE Trans Nucl. Sci. NS-30 2669–2671 (1983).

    Google Scholar 

  17. E. Forest, R. D. Ruth: Fourth-order symplectic integration. Physica43D, 105–117 (1990).

    MathSciNet  Google Scholar 

  18. Stanly Steinberg: Lie Series, Lie transformations, and their applications. Lecture Notes in Physics 250, Lie methods in Optics, 46–103. Wolf.-Berlin: Springer, 1986.

    Google Scholar 

  19. J. M. Sanz-Serna: Runge-Kutta schemes for Hamiltonian systems. BIT28, 877–883 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  20. J. M. Sanz-Serna: The numerical integration of Hamiltonian systems. In: Proceedings of the Conference on Computational Differential Equations. Imperial College, London, 1989 (to appear).

    Google Scholar 

  21. J. M. Sanz-Serna, L. Abia: Order conditions for canonical Runge-Kutta schemes. (to appear).

  22. E. Van Groesen, F. P. H. Beckum: Model consistent discretizations of poisson systems with application to fluid dynamics. NR611 University of Tewente (1987) The Netherland.

    Google Scholar 

  23. A. R. Mitchell, B. A. Murray, B. D. Sleeman: Numerical solution of Hamiltonian systems in reaction-diffusion by symplectic schemes. Preprint, NA/122 Jan 1990. Dundee University.

  24. Qin Meng-Zhao, Zhang Mei-Qing: Symplectic Runge-Kutta schemes for Hamiltonian systems, preprint 1988. Computing Center, Academia Sinica.

  25. Qin Meng-Zhao, Zhang Mei-Qing: Explicit Runge-Kutta-like schemes to solve certain quantum operator equation of motion. JSP,60: 5/6 839–843 (1990).

    Google Scholar 

  26. Qin Meng-Zhao, Zhang Mei-Qing: Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equation. Computers Math. Appl.10, 51–52 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng-Zhao, Q., Wen-Jie, Z. Construction of higher order symplectic schemes by composition. Computing 47, 309–321 (1992). https://doi.org/10.1007/BF02320199

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02320199

AMS Subject Classification

Key words

Navigation