Skip to main content
  • 3131 Accesses

Abstract

In this chapter, a clear Lie-Poisson Hamilton-Jacobi theory is presented. It is also shown how to construct a Lie-Poisson scheme integrator by generating function, which is different from the Ge-Marsden[GM88] method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 209.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. M. Austin, P. S. Krishnaprasad, and L.-S. Wang: Almost Poisson integration of rigid body systems. J. of Comp. Phys., 107:105–117, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Abraham and J. E. Marsden: Foundations of Mechanics. Addison-Wesley, Reading, MA, Second edition, (1978).

    MATH  Google Scholar 

  3. A. I. Arnold and S.P. Novikov: Dynomical System IV. Springer Verlag, Berlin Heidelberg, (1990).

    Book  Google Scholar 

  4. V. I. Arnold: Mathematical Methods of Classical Mechanics. Springer-Verlag, GTM 60, Berlin Heidelberg, Second edition, (1989).

    Book  Google Scholar 

  5. E. Celledoni, F. Fassò, N. Säfström, and A. Zanna: The exact computation of the free rigid body motion and its use in splitting methods. SIAM J. Sci. Comput., 30(4):2084–2112, (2008).

    Article  MathSciNet  Google Scholar 

  6. P. E. Crouch and R. Grossman: Numerical integration of ordinary differential equations on manifolds. J. Nonlinear. Sci., 3:1–33, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. J. Channell and C. Scovel: Symplectic integration of Hamiltonian systems. Nonlinearity, 3:231–259, (1990).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. J. Channel and J. S. Scovel: Integrators for Lie-Poisson dynamical systems. Physica D, 50:80–88, (1991).

    Article  MathSciNet  Google Scholar 

  9. K. Feng: On difference schemes and symplectic geometry. In K. Feng, editor, Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations, pages 42–58. Science Press, Beijing, (1985).

    Google Scholar 

  10. K. Feng: Symplectic geometry and numerical methods in fluid dynamics. In F. G. Zhuang and Y. L. Zhu, editors, Tenth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, pages 1–7. Springer, Berlin, (1986).

    Chapter  Google Scholar 

  11. K. Feng and M.Z. Qin: The symplectic methods for the computation of Hamiltonian equations. In Y. L. Zhu and B. Y. Guo, editors, Numerical Methods for Partial Differential Equations, Lecture Notes in Mathematics 1297, pages 1–37. Springer, Berlin, (1987).

    Chapter  Google Scholar 

  12. K. Feng and M.Z. Qin: Hamiltonian algorithms for Hamiltonian systems and a comparative numerical study. Comput. Phys. Comm., 65:173–187, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  13. K. Feng, H.M. Wu, and M.Z. Qin: Symplectic difference schemes for linear Hamiltonian canonical systems. J. Comput. Math., 8(4):371–380, (1990).

    MathSciNet  MATH  Google Scholar 

  14. K. Feng, H. M. Wu, M.Z. Qin, and D.L. Wang: Construction of canonical difference schemes for Hamiltonian formalism via generating functions. J. Comput. Math., 7:71–96, (1989).

    MathSciNet  MATH  Google Scholar 

  15. Z. Ge: Equivariant symplectic difference schemes and generating functions. Physica D, 49:376–386, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Ge and J. E. Marsden: Lie-Poisson-Hamilton-Jacobi theory and Lie-Poisson integrators. Physics Letters A, pages 134–139, (1988).

    Google Scholar 

  17. E. Hairer and G. Vilmart: Preprocessed discrete Moser-Veselov algorithm for the full dynamics of the rigid body. J. Phys. A, 39:13225–13235, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Karasözen: Poisson integrator. Math. Comput. Modelling, 40:1225–1244, (2004).

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Lie: Zur theorie der transformationsgruppen. Christiania, Gesammelte Abh., Christ. Forh. Aar., 13, (1988).

    Google Scholar 

  20. S. T. Li and M. Qin: Lie-Poisson integration for rigid body dynamics. Computers Math. Applic., 30:105–118, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. T. Li and M. Qin: A note for Lie-Poisson-Hamilton-Jacobi equation and Lie-Poisson integrator. Computers Math. Applic., 30:67–74, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  22. R.I. McLachlan: Explicit Lie-Poisson integration and the Euler equations. Physical Review Letters, 71:3043–3046, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. J. E. Marsden and T. S. Ratiu: Introduction to Mechanics and Symmetry. Number 17 in Texts in Applied Mathematics. Springer-Verlag, Berlin, Second edition, (1999).

    Book  MATH  Google Scholar 

  24. J.E. Marsden, T. Radiu, and A. Weistein: Reduction and hamiltonian structure on dual of semidirect product Lie algebra. Contemporary Mathematics, 28:55–100, (1990).

    Article  Google Scholar 

  25. R. I. McLachlan and C. Scovel: Equivariant constrained symplectic integration. J. Nonlinear. Sci., 5:233–256, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  26. R. I. McLachlan and C. Scovel: A Survey of Open Problems in Symplectic Integration. In J. E. Mardsen, G. W. Patrick, and W. F. Shadwick, editors, Integration Algorithms and Classical Mechanics, pages 151–180. American Mathematical Society, New York, (1996).

    Google Scholar 

  27. J. Moser and A. P. Veselov: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Communications in Mathematical Physics, 139:217–243, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  28. J.E. Marsden and A. Weinstein: Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Phys D, 7: (1983).

    Google Scholar 

  29. R.I. McLachlan and A. Zanna: The discrete Moser-Veselov algorithm for the free rigid body. Foundations of Computational Mathematics, 5(1):87–123, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  30. P. J. Olver: Applications of Lie Groups to Differential Equations. GTM 107. Springer-Verlag, Berlin, Second edition, (1993).

    Book  MATH  Google Scholar 

  31. M. Z. Qin: Cononical difference scheme for the Hamiltonian equation. Mathematical Methodsand in the Applied Sciences, 11:543–557, (1989).

    Article  MATH  Google Scholar 

  32. H. Tal-Fzer: Spectral method in time for hyperbolic equations. SIAM J. Numer. Anal., 23(1):11–26, (1985).

    Article  Google Scholar 

  33. A.P. Veselov: Integrable discrete-time systems and difference operators. Funkts. Anal. Prilozhen, 22:1–33, (1988).

    Article  MathSciNet  MATH  Google Scholar 

  34. A.P. Veselov: Integrable maps. Russian Math. Surveys,, 46:1–51, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  35. D. L. Wang: Symplectic difference schemes for Hamiltonian systems on Poisson manifolds. J. Comput. Math., 9(2):115–124, (1991).

    MathSciNet  MATH  Google Scholar 

  36. W. Zhu and M. Qin: Poisson schemes for Hamiltonian systems on Poisson manifolds. Computers Math. Applic., 27:7–16, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  37. R.van Zon and J. Schofield: Numerical implementation of the exact dynamics of free rigid bodies. J. of Comp. Phys., 221(1):145–164, (2007).

    Article  Google Scholar 

  38. R.van Zon and J. Schofield: Symplectic algorithms for simulations of rigid body systems using the exact solution of free motion. Physical Review E, 50:5607, (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feng, K., Qin, M. (2010). Poisson Bracket and Lie-Poisson Schemes. In: Symplectic Geometric Algorithms for Hamiltonian Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01777-3_13

Download citation

Publish with us

Policies and ethics