Skip to main content

Surveying Theories and Philosophies of Mathematics Education

  • Chapter
  • First Online:
Theories of Mathematics Education

Part of the book series: Advances in Mathematics Education ((AME))

Abstract

Any theory of thinking or teaching or learning rests on an underlying philosophy of knowledge. Mathematics education is situated at the nexus of two fields of inquiry, namely mathematics and education. However, numerous other disciplines interact with these two fields, which compound the complexity of developing theories that define mathematics education. We first address the issue of clarifying a philosophy of mathematics education before attempting to answer whether theories of mathematics education are constructible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, P. A., & Winne, P. H. (2006). Afterword. In P. A. Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology (2nd ed., pp. 981–984). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Artigue, M. (1994). Didactical engineering as a framework for the conception of teaching products. In I. R. Biehler, R. W. Scholtz, R. Sträßer, & B. Winkelmann (Eds.), Didactics of Mathematics as a Scientific Discipline (pp. 247–261). Dordrecht: Kluwer.

    Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work.

    Google Scholar 

  • Assude, T., Boero, P., Herbst, P., Lerman, S., & Radford, L. (2008). The notion and roles of theory in mathematics education research. Paper presented at the 10th International Congress on Mathematical Education, Monterrey, Mexico, July 6–13.

    Google Scholar 

  • Bachelard, G. (1938). La formation de l’esprit scientifique. Paris: J. Vrin.

    Google Scholar 

  • Balacheff, N. (1999). Contract and custom: Two registers of didactical interactions. The Mathematics Educator, 9(2), 23–29.

    Google Scholar 

  • Bell-Gredler, M. E. (1986). Learning and Instruction: Theory Into Practice. New York: Macmillan.

    Google Scholar 

  • Berliner, D. C. (2006). Educational psychology: Searching for essence throughout a century of influence. In P. A. Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology (2nd ed., pp. 3–28). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Bishop, A. (1992). International perspectives on research in mathematics education. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 710–723). Reston, NY: Simon & Schuster Macmillan.

    Google Scholar 

  • Boaler, J. (2008). What’s Math Got to Do With It? Helping Children Learn to Love Their Least Favorite Subject—and Why It’s Important for America. Baltimore: Viking/Penguin.

    Google Scholar 

  • Bosch, M., Chevallard, Y., & Gascon, J. (2005). Science or magic? The use of models and theories in didactics of mathematics. In Proceedings of CERME4, Spain.

    Google Scholar 

  • Bourbaki, N. (1970). Théorie des ensembles dela collection elements de mathématique. Paris: Hermann.

    Google Scholar 

  • Brantlinger, E. (2003). Dividing Classes: How the Middle Class Negotiates and Rationalizes School Advantage. London: Routledge Falmer Press, Taylor and Francis.

    Google Scholar 

  • Brousseau, G. (1981). Problèmes de didactique des décimaux. Recherches en Didactique des Mathématiques, 2, 37–127.

    Google Scholar 

  • Brousseau, G. (1986). Fondemonts et methods de la didactique des mathématiques. Recherches en Didactique des Mathématiques, 7(2), 33–115.

    Google Scholar 

  • Brousseau, G. (1997). Theory of Didactical Situations in Mathematics. Dordrecht: Kluwer.

    Google Scholar 

  • Brousseau, G. (1999a). Research in mathematics education: Observation and … mathematics. In Schwank (Ed.), Proceedings of CERME 1 (Vol. 1, pp. 35–49). Osnabrueck: Forschungs Institut fuer Mathematikdidaktik.

    Google Scholar 

  • Brousseau, G. (1999b). Education and didactique of mathematics. Plenary Lecture at Congress of Aguas Calientes, Mexico, October 1999. Pre-print obtained from Author. 42 pages.

    Google Scholar 

  • Brunschwicg, L. (1912). Les etapes de la philosophie mathématique. Paris: F. Alcan.

    Google Scholar 

  • Burton, L. (2004). Mathematicians as Enquirers. Dordrecht: Kluwer.

    Google Scholar 

  • Calfee, R. (2006). Educational psychology in the 21st century. In P. A. Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology (2nd ed., pp. 29–42). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Campbell, S. R. (2006). Educational neuroscience: New horizons for research in mathematics education. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 257–264). Prague: PME.

    Google Scholar 

  • Chevallard, Y. (1985). La transposition didactique. Du savoir savant au savoir enseigné. Grenoble: La Pensée Sauvage.

    Google Scholar 

  • Chevallard, Y. (1992a). Fondamentals concepts of didactics: Perspectives given by an anthropological approach. Recherches en Didactique des Mathématiques, 12(1), 73–112.

    Google Scholar 

  • Chevallard, Y. (1992b). A theoretical approach to curricula. Journal für Mathematik Didaktik, 2/3, 215–230.

    Google Scholar 

  • Chevallard, Y. (1999a). L’analyse des pratiques enseignantes en théorie anthropologique du didactique. Recherches en Didactique des Mathématiques, 19(2), 221–266.

    Google Scholar 

  • Chevallard, Y. (1999b). Didactique? You must be joking! A critical comment on terminology. Instructional Science, 27, 5–7.

    Google Scholar 

  • Cobb, P. (2007). Putting philosophy to work. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 3–38). Charlotte, NC: Information Age Publishing and Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • D’Ambrosio, U. (1999). Literacy, matheracy, and technoracy: A trivium for today. Mathematical Thinking and Learning, 1(2), 131–154.

    Article  Google Scholar 

  • Davis, R., Maher, C., & Noddings, N. (Eds.) (1990). Constructivist Views on the Teaching and Learning of Mathematics. Reston, VA: NCTM.

    Google Scholar 

  • Dieudonné, J. (1961). New thinking in school mathematics. In New Thinking in School Mathematics (pp. 31–46). Paris: OEEC.

    Google Scholar 

  • Dieudonné, J. (1992). Mathematics—The Music of Reason. New York: Springer-Verlag.

    Google Scholar 

  • Eisenberg, T., & Fried, M. (2008). Dialogue on mathematics education: The state of the art through different lenses. ZDM—The International Journal on Mathematics Education, 40(2), 165–178.

    Google Scholar 

  • Eisenberg, T., & Fried, M. (2009). Dialogue on mathematics education: Two points of view on the state of the art through different lenses. ZDM—The International Journal on Mathematics Education, 41(1&2), 143–149.

    Article  Google Scholar 

  • English, L. D. (Ed.) (2002). Handbook of International Research in Mathematics Education. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • English, L. D. (2007). Complex systems in the elementary and middle school mathematics curriculum: A focus on modeling. In B. Sriraman (Ed.), The Montana Mathematics Enthusiast Monograph : Vol. 3. Festschrift in Honor of Gunter Torner (pp. 139–156). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • English, L. D. (2008a). Handbook of International Research in Mathematics Education (2nd ed.). London: Routledge, Taylor & Francis.

    Google Scholar 

  • English, L. D. (2008b). Mathematical modeling: Linking mathematics, science, and the arts in the elementary curriculum. In B. Sriraman, C. Michelsen, A. Beckmann, & V. Freiman (Eds.), Proceedings of the Second International Symposium on Mathematics and its Connections to the Arts and Sciences (MACAS2) (pp. 5–36). Odense: University of Southern Denmark Press.

    Google Scholar 

  • English, L. D. (2009). Promoting interdisciplinarity through mathematical modelling. ZDM: The International Journal on Mathematics Education, 41(1), 161–181.

    Article  Google Scholar 

  • English, L. D., & Mousoulides, N. (2009). Integrating engineering education within the elementary and middle school mathematics curriculum. In B. Sriraman, V. Freiman, & N. Lirette-Pitre (Eds.), Interdisciplinarity, Creativity and Learning: Mathematics with Literature, Paradoxes, History, Technology and Modeling (pp. 165–176). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Ernest, P. (1991). The Philosophy of Mathematics Education. Briston, PA: The Falmer Press.

    Google Scholar 

  • Ernest, P. (1994). Conversation as a metaphor for mathematics and learning. In Proceedings of the British Society for Research into Learning Mathematics Day Conference, Manchester Metropolitan University (pp. 58–63). Nottingham: BSRLM.

    Google Scholar 

  • Furinghetti, F. (2003). Mathematical instruction in an international perspective: The contribution of the journal L’Enseignement Mathématique. In D. Coray, F. Furinghetti, H. Gispert, B. Hodgson, & G. Schubring (Eds.), One Hundred Years of l’Enseignement Mathématique, Monograph No. 39 (pp. 19–46). Geneva.

    Google Scholar 

  • Gascón, J. (2003). From the cognitive program to the epistemological program in didactics of mathematics. Two incommensurable scientific research programs? For the Learning of Mathematics, 23(2), 44–55.

    Google Scholar 

  • Goldin, G. A. (2003). Developing complex understandings: On the relation of mathematics education research to mathematics. Educational Studies in Mathematics, 54, 171–202.

    Article  Google Scholar 

  • Guerra, J. C. (1998). Close to Home: Oral and Literate Practices in a Transnational Mexicano Community. New York: Teachers College Press.

    Google Scholar 

  • Hall, R. (1999). Case studies of math at work: Exploring design-oriented mathematical practices in school and work settings (NSF Rep. No. RED-9553648). Arlington, VA: National Science Foundation.

    Google Scholar 

  • Hersh, R. (1978). Introducing Imre Lakatos. Mathematical Intelligencer, 1(3), 148–151.

    Article  Google Scholar 

  • Hersh, R. (1997). What is Mathematics, Really? New York: Oxford University Press.

    Google Scholar 

  • Hersh, R. (2006). 18 Unconventional Essays on the Nature of Mathematics. New York: Springer Science & Business Media Inc.

    Book  Google Scholar 

  • Hiebert, J., & Grouws, D. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 371–404). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Kaiser, G. (2002). Educational philosophies and their influence on mathematics education—An ethnographic study in English and German classrooms. International Reviews on Mathematical Education (ZDM), 34(6), 241–257.

    Google Scholar 

  • Kilpatrick, J. (1981). The reasonable ineffectiveness of research in mathematics education. For the Learning of Mathematics, 2(2), 22–29.

    Google Scholar 

  • Kilpatrick, J. (1992). A history of research in mathematics education. In D. A. Grouws (Ed.), Handbook of Research on Mathematics Teaching and Learning (pp. 3–38). New York: Simon & Schuster Macmillan.

    Google Scholar 

  • King, K. D., & McLeod, D. (1999). Coming of age in academe—A review of Mathematics Education as a Research Identity. Journal for Research in Mathematics Education, 30(2), 227–234.

    Article  Google Scholar 

  • Kuhn, T. S. (1966). The Structure of Scientific Revolutions (3rd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1970). Criticism and Growth of Knowledge. New York: Cambridge Press.

    Google Scholar 

  • Lakatos, I. (1976). Proofs and Refutations. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics Into Being. New York: Basic Books.

    Google Scholar 

  • Lampert, M. (1990). When the problem is not the question and the solution is not the answer: Mathematical knowing and teaching. American Educational Research Journal, 27(1), 29–63.

    Google Scholar 

  • Lenoir, T. (1981). Review of Imre Lakatos’ Proofs and Refutations. Historia Mathematica, 8, 99–104.

    Article  Google Scholar 

  • Lerman, S. (1998). Research on socio-cultural perspectives of mathematics teaching and learning. In J. Kilpatrick & A. Sierpinska (Eds.), Mathematics Education as a Research Domain: A Search for Identity (Vol. 1, pp. 333–350). London: Kluwer.

    Google Scholar 

  • Lerman, S. (2000). The social turn in mathematics education research. In J. Boaler (Ed.), Multiple Perspectives on Mathematics Teaching and Learning. Westport, CT: Ablex Publishing.

    Google Scholar 

  • Lesh, R. A. (2007). Foundations for the future in engineering and other fields that are heavy users of mathematics, science, and technology. In R. A. Lesh, E. Hamilton, & J. J. Kaput (Eds.), Foundations for the Future in Mathematics Education. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lesh, R. (2008). Directions for future research and development in engineering education. In J. Zawojewski, H. Diefes-Dux, & K. Bowman (Eds.), Models and Modeling in Engineering Education: Designing Experiences for All Students (pp. 271–291). Rotterdam: Sense Publications.

    Google Scholar 

  • Lesh, R., & Sriraman, B. (2005). Mathematics education as a design science. Zentralblatt für Didaktik der Mathematik, 37(6), 490–505.

    Article  Google Scholar 

  • Lester, F. (2005). On the theoretical, conceptual, and philosophical foundations for research in mathematics education. Zentralblatt für Didaktik der Mathematik, 37(6), 457–467.

    Article  Google Scholar 

  • Lincoln, Y. S., & Guba, E. G. (1994). Competing paradigms in qualitative research. In N. Denzin & Y. Lincoln (Eds.), Handbook of Qualitative Research (pp. 105–117). Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Malara, N., & Zan, R. (2008). The complex interplay between theory in mathematics education and teacher’s practice: Reflections and examples. In L. D. English (Ed.), Handbook of International Research in Mathematics Education (2nd ed., pp. 535–560). London: Routledge, Taylor & Francis.

    Google Scholar 

  • Moon, B. (1986). The ‘New Maths’ Curriculum Controversy: An International Story. London: The Falmer Press.

    Google Scholar 

  • OEEC (1961). New Thinking in School Mathematics. Paris: OEEC.

    Google Scholar 

  • Pepin, B. (1998). Mobility of mathematics teachers across England, France and Germany: Any problems? Paper presented at the European Conference for Educational Research, University of Ljubljana, Slovenia September 1998. http://www.leeds.ac.uk/educol/documents/000000871.htm, accessed November 12, 2006.

  • Pepin, B. (1999a). The influence of national cultural traditions on pedagogy: Classroom practices in England, France and Germany. In J. Leach & B. Moon (Eds.), Learners and Pedagogy (pp. 237–252). London: Sage.

    Google Scholar 

  • Pepin, B. (1999b). Epistemologies, beliefs and conceptions of mathematics teaching and learning: the theory, and what is manifested in mathematics teachers’ work in England, France and Germany (The Open University, UK). TNTEE Publications, 2, 127–146.

    Google Scholar 

  • Pepin, B. (2002). Different cultures, different meanings, different teachings. In L. Haggarty (Ed.), Teaching Mathematics in Secondary Schools (pp. 245–258). London: Routledge.

    Google Scholar 

  • Piaget, J. (1955). The Child’s Construction of Reality. London: Routledge and Kegan Paul.

    Google Scholar 

  • Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human Development, 15(1), 1–12.

    Article  Google Scholar 

  • Pimm, D., Beisiegel, M., & Meglis, I. (2008). Would the real Lakatos please stand up? Interchange: A Quarterly Review of Education, 39(4), 469–481.

    Google Scholar 

  • Pitman, A. (1989). Mathematics education reform in its social, political and economic contexts. In N. F. Ellerton & M. A. Clements (Eds.), School Mathematics: The Challenge to Change (pp. 102–119). Geelong, Vic, Australia: Deakin University Press.

    Google Scholar 

  • Poincaré, H. (1908). L’invention mathématique. L’Enseignment Mathématique, 10, 357–371.

    Google Scholar 

  • Prediger, S., Ferdinando, A., Bosch, M., & Lenfant, A. (Issue Editors) (2008a). Comparing combining, co-ordinating—networking strategies for connecting theoretical approaches. ZDM—The International Journal on Mathematics Education, 40(2), 163–340.

    Google Scholar 

  • Prediger, S., Arzarello, F., Bosch, M., & Lenfant, A. (Eds.) (2008b). Comparing, combining, coordinating—Networking strategies for connecting theoretical approaches. Thematic Issue of ZDM—The International Journal on Mathematics Education, 40(2), 163–327.

    Google Scholar 

  • Presmeg, N. (2009). Mathematics education research embracing arts and sciences. ZDM—The International Journal on Mathematics Education, 41(1&2), 131–141.

    Article  Google Scholar 

  • Roth, W.-M. (2007). Emotions at work: A contribution to third-generation cultural historical activity theory. Mind, Culture and Activity, 14, 40–63.

    Article  Google Scholar 

  • Roth, W. M. (2009). Mathematical Representations at the Interface of Body and Culture. Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Rotman, B. (2000). Mathematics as Sign: Writing, Imagining, Counting. Stanford: Stanford University Press.

    Google Scholar 

  • Sanders, D. P. (1981). Educational inquiry as developmental insight. Educational Researcher, 10(3), 8–13.

    Google Scholar 

  • Schoenfeld, A. H. (2000). Purposes and methods of research in mathematics education. Notices of the AMS, 47(6), 641–649.

    Google Scholar 

  • Schoenfeld, A. H. (2002). Research methods in (mathematics) education. In L. D. English (Ed.), Handbook of International Research in Mathematics Education (pp. 435–487). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Secada, W. (1995). Social and critical dimensions for equity in mathematics education. In W. Secada, E. Fennema, & L. Byrd Adajian (Eds.), New Directions for Equity in Mathematics Education (pp. 147–164). Cambridge: Cambridge University Press.

    Google Scholar 

  • Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Sfard, A. (2008). Thinking as Communicating. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sierpinska, A., & Kilpatrick, J. (1998). Mathematics Education as a Research Domain: A for Identity (Vols. 1 & 2). London: Kluwer.

    Google Scholar 

  • Sierpinska, A., & Lerman, S. (1996). Epistemologies of mathematics and mathematics education. In A. J. Bishop, M. A. Clements, C. Keital, J. Kilpatrick, & C. Laborde (Eds.), International Handbook of Mathematics Education (pp. 827–876). Springer.

    Google Scholar 

  • Silver, E. A., & Herbst, P. (2004, April). “Theory” in mathematics education scholarship. Paper presented at the research pre-session of the annual meeting of the National Council of Teachers of Mathematics, Philadelphia, PA.

    Google Scholar 

  • Silver, E. A., & Herbst, P. (2007). Theory in mathematics education scholarship. In F. K. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 39–67). Charlotte, NC: Information Age Publishing and Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Skovsmose, O. (1997). Critical mathematics education: Some philosophical remarks. The Royal Danish School of Educational Studies, Copenhagen (Denmark). Dept. of Mathematics, Physics, Chemistry and Informatics), 12 pp.

    Google Scholar 

  • Skovsmose, O. (2004). Mathematics: Insignificant? Philosophy of Mathematics Education Journal (Oct 2004) (no. 18), 19 p.

    Google Scholar 

  • Skovsmose, O. (2005). Traveling through Education. Rotterdam: Sense Publishers.

    Google Scholar 

  • Skovsmose, O., & Valero, P. (2008). Democratic access to powerful mathematics ideas. In L. D. English (Ed.), Handbook of International Research in Mathematics Education (2nd ed., pp. 383–408). London: Routledge, Taylor & Francis.

    Google Scholar 

  • Sriraman, B. (2006). An ode to Imre Lakatos: Quasi-thought experiments to bridge the ideal and actual mathematics classrooms. Interchange: A Quarterly Review of Education, 37(1–2), 151–178.

    Article  Google Scholar 

  • Sriraman, B. (2008). Let Lakatos be! A commentary on “Would the real Lakatos Please Stand up”. Interchange: A Quarterly Review of Education, 39(4), 483–492.

    Google Scholar 

  • Sriraman, B. (2009a). On the identities of mathematics education. Interchange: A Quarterly Review of Education, 40(1), 119–135.

    Article  Google Scholar 

  • Sriraman, B. (2009b). A historic overview of the interplay of theology and philosophy in the arts, mathematics and sciences. ZDM—The International Journal on Mathematics Education, 41(1 & 2), 75–86.

    Article  Google Scholar 

  • Sriraman, B., & English, L. (2005). Theories of mathematics education: A global survey of theoretical frameworks/trends in mathematics education research. Zentralblatt für Didaktik der Mathematik (International Reviews on Mathematical Education), 37(6), 450–456.

    Article  Google Scholar 

  • Sriraman, B., & Strzelecki, P. (2004). Playing with powers. The International Journal for Technology in Mathematics Education, 11(1), 29–34.

    Google Scholar 

  • Sriraman, B., & Törner, G. (2008). Political union/mathematical education disunion. In L. D. English (Ed.), Handbook of International Research in Mathematics Education (2nd ed., pp. 656–690). London: Routledge, Taylor & Francis.

    Google Scholar 

  • Steen, L. (1999). Review of mathematics education as research domain. Journal for Research in Mathematics Education, 30(2), 235–41.

    Article  Google Scholar 

  • Steffe, L. (1992). Building a foundation. Journal for Research in Mathematics Education, 23(2), 182–186.

    Article  Google Scholar 

  • Steffe, L., Nesher, P., Cobb, P., Greer, B., & Goldin, J. (Eds.) (1996). Theories of Mathematical Learning. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Steiner, H.-G. (1985). Theory of mathematics education (TME): An introduction. For the Learning of Mathematics, 5(2), 11–17.

    Google Scholar 

  • Steiner, H. G., & Vermandel, A. (1988). Foundations and methodology of the discipline of mathematics education. In Proceedings of the TME Conference. Antwerp, Belgium.

    Google Scholar 

  • Stevens, R. (2000). Who counts what as mathematics? Emergent and assigned mathematics problems in a project-based classroom. In J. Boaler (Ed.), Multiple Perspectives on Mathematics Teaching and Learning (pp. 105–144). Westport: Ablex Publishing.

    Google Scholar 

  • Stewart, I. (1995). Bye-bye Bourbaki—paradigm shifts in mathematics. Mathematical Gazette, 79(486), 496–498.

    Article  Google Scholar 

  • Thom, R. (1973). Modern mathematics: Does it exist? In A. G. Howson (Ed.), Developments in Mathematical Education. Proceedings of the Second International Congress on Mathematical Education (pp. 194–209). Cambridge: Cambridge University Press.

    Google Scholar 

  • Törner, G., & Sriraman, B. (2007). A contemporary analysis of the six “Theories of Mathematics Education” theses of Hans-Georg Steiner. ZDM—The International Journal on Mathematics Education, 39(1&2), 155–163.

    Article  Google Scholar 

  • Von Glasersfeld, E. (1984). An introduction to radical constructivism. In P. Watzlawick (Ed.), The Invented Reality (pp. 17–40). New York: Norton.

    Google Scholar 

  • Von Glasersfeld, E. (1987). Learning as a constructive activity. In C. Janvier (Ed.), Problems of Representation in the Teaching and Learning of Mathematics (pp. 3–18). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Von Glasersfeld, E. (1989). Constructivism. In T. Husen & T. N. Postlewaithe (Eds.), The International Encyclopedia of Education (1st ed., supplement Vol. 1, pp. 162–163). Oxford: Pergamon.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind and Society: The Development of Higher Psychological Processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharath Sriraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sriraman, B., English, L. (2010). Surveying Theories and Philosophies of Mathematics Education. In: Sriraman, B., English, L. (eds) Theories of Mathematics Education. Advances in Mathematics Education. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00742-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00742-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00741-5

  • Online ISBN: 978-3-642-00742-2

  • eBook Packages: Humanities, Social Sciences and LawEducation (R0)

Publish with us

Policies and ethics