Skip to main content

Bile Acids and Their Receptors

  • Chapter
  • First Online:
Signaling Pathways in Liver Diseases

Abstract

In animals, cholesterol is an essential molecule for membrane formation and synthesis of hormones and bile acids (BAs). Excess of cholesterol, either due to food consumption or endogenous synthesis, leads to gallstone formation and atherosclerosis. BAs produced from cholesterol and free cholesterol are secreted into bile and subsequently eliminated via feces, the only route to eliminate excess of cholesterol. As a major secretory pathway, the different steps of bile formation are precisely controlled and coordinated mostly via a complex network of nuclear receptors. Nuclear receptors (NRs) are transcription factors that, upon ligand binding and cofactors recruitment, modulate polymerase II activity and therefore gene expression, after binding to highly specific DNA response elements located in gene promoters. The Farnesoid X Receptor (FXR, NR1H4) [1] is a bile acid activated nuclear receptor [2–4], regulating several key steps of hepatic physiology such as bile formation, phase I/II metabolism, and glucose, lipid, and lipoprotein metabolisms [5]. Moreover, other NRs like Pregnane X Receptor (PXR; NRI2) [6, 7], Vitamin D Receptor (VDR; NR1I1) [8], and Constitutive Androstane Receptor (CAR; NR1I3) [9, 10] were identified as additional bile acid responsive NRs. In addition to NRs, BAs can also activate a membrane receptor for BAs (TGR5/BG37) [11, 12], a step which does not require bile acid uptake into target cells. Both FXR and TGR5 may play an important role in the pathogenesis and treatment of a variety of hepatic and extrahepatic metabolic disorders including cholestasis, fatty liver, diabetes, dylipidemia, and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Forman BM, Goode E, Chen J et al (1995) Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81(5):687–693

    Article  PubMed  CAS  Google Scholar 

  2. Makishima M, Okamoto AY, Repa JJ et al (1999) Iden­tification of a nuclear receptor for bile acids. Science 284 (5418):1362–1365

    Article  PubMed  CAS  Google Scholar 

  3. Parks DJ, Blanchard SG, Bledsoe RK et al (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284(5418):1365–1368

    Article  PubMed  CAS  Google Scholar 

  4. Wang H, Chen J, Hollister K, Sowers LC, Forman BM (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3(5):543–553

    Article  PubMed  CAS  Google Scholar 

  5. Claudel T, Staels B, Kuipers F (2005) The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 25(10):2020–2030

    Article  PubMed  CAS  Google Scholar 

  6. Staudinger JL, Goodwin B, Jones SA et al (2001) The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. PNAS 98(6):3369–3374

    Article  PubMed  CAS  Google Scholar 

  7. Xie W, Radominska-Pandya A, Shi Y et al (2001) An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci U S A 98(6): 3375–3380

    Article  PubMed  CAS  Google Scholar 

  8. Makishima M, Lu TT, Xie W et al (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296(5571): 1313–1316

    Article  PubMed  CAS  Google Scholar 

  9. Uppal H, Toma D, Saini SP, Ren S, Jones TJ, Xie W (2005) Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice. Hepatology 41(1): 168–176

    Article  PubMed  CAS  Google Scholar 

  10. Zhang J, Huang W, Qatanani M, Evans RM, Moore DD (2004) The constitutive androstane receptor and pregnane X receptor function coordinately to prevent bile acid-induced hepatotoxicity. J Biol Chem 279(47):49517–49522

    Article  PubMed  CAS  Google Scholar 

  11. Maruyama T, Miyamoto Y, Nakamura T et al (2002) Iden­tification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 298(5):714–719

    Article  PubMed  CAS  Google Scholar 

  12. Kawamata Y, Fujii R, Hosoya M et al (2003) A G Protein-coupled receptor responsive to bile acids. J Biol Chem 278(11):9435–9440

    Article  PubMed  CAS  Google Scholar 

  13. Trauner M, Boyer JL (2003) Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 83(2):633–671

    PubMed  CAS  Google Scholar 

  14. Hofmann AF (1999) The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med 159(22): 2647–2658

    Article  PubMed  CAS  Google Scholar 

  15. Nathanson MH, Boyer JL (1991) Mechanisms and regulation of bile secretion. Hepatology 14(3):551–566

    Article  PubMed  CAS  Google Scholar 

  16. Baiocchi L, LeSage G, Glaser S, Alpini G (1999) Regulation of cholangiocyte bile secretion. J Hepatol 31(1): 179–191

    Article  PubMed  CAS  Google Scholar 

  17. Marzioni M, Glaser SS, Francis H, Phinizy JL, LeSage G, Alpini G (2002) Functional heterogeneity of cholangiocytes. Semin Liver Dis 22(3):227–240

    Article  PubMed  Google Scholar 

  18. Lazaridis KN, Strazzabosco M, Larusso NF (2004) The cholangiopathies: disorders of biliary epithelia. Gastroenterology 127(5):1565–1577

    Article  PubMed  CAS  Google Scholar 

  19. Kullak-Ublick GA, Stieger B, Meier PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126(1):322–342

    Article  PubMed  CAS  Google Scholar 

  20. Trauner M, Wagner M, Fickert P, Zollner G (2005) Molecular regulation of hepatobiliary transport systems: clinical implications for understanding and treating cholestasis. J Clin Gastroenterol 39(4 Suppl 2):S111–124

    Article  Google Scholar 

  21. Hofmann AF (1999) Bile acids: The good, the bad, and the ugly. News Physiol Sci 14:24–29

    PubMed  CAS  Google Scholar 

  22. Fiorucci S, Rizzo G, Donini A, Distrutti E, Santucci L (2007) Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol Med 13(7):298–309

    Article  PubMed  CAS  Google Scholar 

  23. Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 72:137–174

    Article  PubMed  CAS  Google Scholar 

  24. Chiang JY (2004) Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40(3): 539–551

    Article  PubMed  CAS  Google Scholar 

  25. Lehmann JM, Kliewer SA, Moore LB et al (1997) Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 272(6):3137–3140

    Article  PubMed  CAS  Google Scholar 

  26. Peet DJ, Turley SD, Ma W et al (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93(5):693–704

    Article  PubMed  CAS  Google Scholar 

  27. Kern F Jr (1991) Normal plasma cholesterol in an 88-year-old man who eats 25 eggs a day Mechanisms of adaptation. N Engl J Med 324(13):896–899

    Article  PubMed  Google Scholar 

  28. Goodwin B, Jones SA, Price RR et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6(3):517–526

    Article  PubMed  CAS  Google Scholar 

  29. Lu TT, Makishima M, Repa JJ et al (2000) Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6(3):507–515

    Article  PubMed  CAS  Google Scholar 

  30. Hayhurst GP, Lee YH, Lambert G, Ward JM, Gonzalez FJ (2001) Hepatocyte nuclear factor 4alpha (nuclear receptor 2A1) is essential for maintenance of hepatic gene expression and lipid homeostasis. Mol Cell Biol 21(4):1393–1403

    Article  PubMed  CAS  Google Scholar 

  31. Davis RA, Miyake JH, Hui TY, Spann NJ (2002) Regulation of cholesterol-7alpha-hydroxylase: BAREly missing a SHP. J Lipid Res 43(4):533–543

    PubMed  CAS  Google Scholar 

  32. Mataki C, Magnier BC, Houten SM et al (2007) Compromised intestinal lipid absorption in mice with a liver-specific deficiency of liver receptor homolog 1. Mol Cell Biol 27(23): 8330–8339

    Article  PubMed  CAS  Google Scholar 

  33. Lee YK, Schmidt DR, Cummins CL et al (2008) Liver receptor homolog-1 regulates bile acid homeostasis but is not essential for feedback regulation of bile acid synthesis. Mol Endocrinol 22(6):1345–1356

    Article  PubMed  CAS  Google Scholar 

  34. Li-Hawkins J, Lund EG, Turley SD, Russell DW (2000) Disruption of the oxysterol 7alpha-hydroxylase gene in mice. J Biol Chem 275(22):16536–16542

    Article  PubMed  CAS  Google Scholar 

  35. Kerr TA, Saeki S, Schneider M et al (2002) Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis. Dev Cell 2(6): 713–720

    Article  PubMed  CAS  Google Scholar 

  36. Wang L, Lee YK, Bundman D et al (2002) Redundant pathways for negative feedback regulation of bile Acid production. Dev Cell 2(6):721–731

    Article  PubMed  CAS  Google Scholar 

  37. Kim I, Ahn SH, Inagaki T et al (2007) Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res 48(12):2664–2672

    Article  PubMed  CAS  Google Scholar 

  38. Jung D, Kullak-Ublick GA (2003) Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology 37(3):622–631

    Article  PubMed  CAS  Google Scholar 

  39. De Fabiani E, Mitro N, Gilardi F, Caruso D, Galli G, Crestani M (2003) Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem 278(40):39124–39132

    Article  PubMed  CAS  Google Scholar 

  40. Li T, Chiang JY (2005) Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7 alpha-hydroxylase gene transcription. Am J Physiol Gastrointest Liver Physiol 288(1):G74–84

    Article  CAS  Google Scholar 

  41. Kesaniemi YA, Grundy SM (1984) Influence of gemfibrozil and clofibrate on metabolism of cholesterol and plasma triglycerides in man. Jama 251(17):2241–2246

    Article  PubMed  CAS  Google Scholar 

  42. Marrapodi M, Chiang JY (2000) Peroxisome proliferator-activated receptor alpha (PPARalpha) and agonist inhibit cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Lipid Res 41(4):514–520

    PubMed  CAS  Google Scholar 

  43. Hunt MC, Yang YZ, Eggertsen G et al (2000) The peroxisome proliferator-activated receptor alpha (PPARalpha) regulates bile acid biosynthesis. J Biol Chem 275(37): 28947–28953

    Article  PubMed  CAS  Google Scholar 

  44. Gupta S, Stravitz RT, Dent P, Hylemon PB (2001) Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem 276(19):15816–15822

    Article  PubMed  CAS  Google Scholar 

  45. De Fabiani E, Mitro N, Anzulovich AC, Pinelli A, Galli G, Crestani M (2001) The negative effects of bile acids and tumor necrosis factor-alpha on the transcription of cholesterol 7alpha-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4: a novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J Biol Chem 276(33):30708–30716

    Article  PubMed  Google Scholar 

  46. Pandak WM, Li YC, Chiang JY et al (1991) Regulation of cholesterol 7 alpha-hydroxylase mRNA and transcriptional activity by taurocholate and cholesterol in the chronic biliary diverted rat. J Biol Chem 266(6):3416–3421

    PubMed  CAS  Google Scholar 

  47. Inagaki T, Choi M, Moschetta A et al (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2(4):217–225

    Article  PubMed  CAS  Google Scholar 

  48. Holt JA, Luo G, Billin AN et al (2003) Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17(13):1581–1591

    Article  PubMed  CAS  Google Scholar 

  49. Yu C, Wang F, Kan M et al (2000) Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 275(20): 15482–15489

    Article  PubMed  CAS  Google Scholar 

  50. Ito S, Fujimori T, Furuya A, Satoh J, Nabeshima Y, Nabeshima Y (2005) Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 115(8):2202–2208

    Article  PubMed  CAS  Google Scholar 

  51. Lin BC, Wang M, Blackmore C, Desnoyers LR (2007) Liver-specific activities of FGF19 require Klotho beta. J Biol Chem 282(37):27277–27284

    Article  PubMed  CAS  Google Scholar 

  52. Kurosu H, Choi M, Ogawa Y et al (2007) Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282(37):26687–26695

    Article  PubMed  CAS  Google Scholar 

  53. Wu X, Ge H, Gupte J et al (2007) Co-receptor requirements for fibroblast growth factor-19 signaling. J Biol Chem 282(40):29069–29072

    Article  PubMed  CAS  Google Scholar 

  54. Jung D, Inagaki T, Dawson PA, Kliewer SA, Mangelsdorf DJ, Moschetta A (2007) FXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption. J Lipid Res. 2007 Dec;48(12):2693–2700

    Google Scholar 

  55. Zhang M, Chiang JY (2001) Transcriptional Regulation of the Human Sterol 12alpha Hydroxylase Gene (CYP8B1) Roles of Hepatocyte Nuclear Receptor 4alpha in mediating bile acid repression. J Biol Chem 276(45):41690–41699

    Article  PubMed  CAS  Google Scholar 

  56. Shoda J, Kano M, Oda K et al (2001) The expression levels of plasma membrane transporters in the cholestatic liver of patients undergoing biliary drainage and their association with the impairment of biliary secretory function. Am J Gastroenterol 96(12):3368–3378

    Article  PubMed  CAS  Google Scholar 

  57. Bremmelgaard A, Sjovall J (1979) Bile acid profiles in urine of patients with liver diseases. Eur J Clin Invest 9(5):341–348

    Article  PubMed  CAS  Google Scholar 

  58. Bodin K, Lindbom U, Diczfalusy U (2005) Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 1687(1–3):84–93

    PubMed  CAS  Google Scholar 

  59. Handschin C, Meyer UA (2003) Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev 55(4): 649–673

    Article  PubMed  CAS  Google Scholar 

  60. Gnerre C, Blattler S, Kaufmann MR, Looser R, Meyer UA (2004) Regulation of CYP3A4 by the bile acid receptor FXR: evidence for functional binding sites in the CYP3A4 gene. Pharmacogenetics 14(10):635–645

    Article  PubMed  CAS  Google Scholar 

  61. Drocourt L, Ourlin JC, Pascussi JM, Maurel P, Vilarem MJ (2002) Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J Biol Chem 277(28):25125–25132

    Article  PubMed  CAS  Google Scholar 

  62. Goodwin B, Hodgson E, D’Costa DJ, Robertson GR, Liddle C (2002) Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol Pharmacol 62(2):359–365

    Article  PubMed  CAS  Google Scholar 

  63. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB (1997) Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. Faseb J 11(1):3–14

    PubMed  CAS  Google Scholar 

  64. Falany CN (1997) Enzymology of human cytosolic sulfotransferases. Faseb J 11(4):206–216

    PubMed  CAS  Google Scholar 

  65. Thomassen PA (1979) Urinary bile acids in late pregnancy and in recurrent cholestasis of pregnancy. Eur J Clin Invest 9(6):425–432

    Article  PubMed  CAS  Google Scholar 

  66. Makino I, Hashimoto H, Shinozaki K, Yoshino K, Nakagawa S (1975) Sulfated and nonsulfated bile acids in urine, serum, and bile of patients with hepatobiliary diseases. Gastroenterology 68(3):545–553

    PubMed  CAS  Google Scholar 

  67. van Berge Henegouwen GP, Brandt KH, Eyssen H, Parmentier G (1976) Sulphated and unsulphated bile acids in serum, bile, and urine of patients with cholestasis. Gut 17(11):861–869

    Article  PubMed  Google Scholar 

  68. Song CS, Echchgadda I, Baek BS et al (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid x receptor. J Biol Chem 276(45):42549–42556

    Article  PubMed  CAS  Google Scholar 

  69. Sonoda J, Xie W, Rosenfeld JM, Barwick JL, Guzelian PS, Evans RM (2002) Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR). Proc Natl Acad Sci U S A 99(21):13801–13806

    Article  PubMed  CAS  Google Scholar 

  70. Echchgadda I, Song CS, Roy AK, Chatterjee B (2004) Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor. Mol Pharmacol 65(3):720–729

    Article  PubMed  CAS  Google Scholar 

  71. Assem M, Schuetz EG, Leggas M et al (2004) Interactions between hepatic Mrp4 and Sult2a as revealed by the constitutive androstane receptor and Mrp4 knockout mice. J Biol Chem 279(21):22250–22257

    Article  PubMed  CAS  Google Scholar 

  72. Saini SP, Sonoda J, Xu L et al (2004) A novel constitutive androstane receptor-mediated and CYP3A-independent pathway of bile acid detoxification. Mol Pharmacol 65(2): 292–300

    Article  PubMed  CAS  Google Scholar 

  73. Makishima M (2005) Nuclear receptors as targets for drug development: regulation of cholesterol and bile acid metabolism by nuclear receptors. J Pharmacol Sci 97(2): 177–183

    Article  PubMed  CAS  Google Scholar 

  74. Takikawa H, Beppu T, Seyama Y (1984) Urinary concentrations of bile acid glucuronides and sulfates in hepatobiliary diseases. Gastroenterol Jpn 19(2):104–109

    PubMed  CAS  Google Scholar 

  75. Frohling W, Stiehl A (1976) Bile salt glucuronides: identification and quantitative analysis in the urine of patients with cholestasis. Eur J Clin Invest 6(1):67–74

    Article  PubMed  CAS  Google Scholar 

  76. Barbier O, Torra IP, Sirvent A et al (2003) FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 124(7):1926–1940

    Article  PubMed  CAS  Google Scholar 

  77. Barbier O, Duran-Sandoval D, Pineda-Torra I, Kosykh V, Fruchart JC, Staels B (2003) Peroxisome proliferator-activated receptor alpha induces hepatic expression of the human bile acid glucuronidating UDP-glucuronosyltransferase 2B4 enzyme. J Biol Chem 278(35):32852–32860

    Article  PubMed  CAS  Google Scholar 

  78. Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B (2003) Bile Acids Induce the Expression of the Human Peroxisome Proliferator- Activated Receptor alpha Gene via Activation of the Farnesoid X Receptor. Mol Endocrinol 17(2):259–272

    Article  PubMed  CAS  Google Scholar 

  79. Lu Y, Heydel JM, Li X, Bratton S, Lindblom T, Radominska-Pandya A (2005) Lithocholic Acid decreases expression of ugt2b7 in caco-2 cells: a potential role for a negative farnesoid x receptor response element. Drug Metab Dispos 33(7): 937–946

    Article  PubMed  CAS  Google Scholar 

  80. Jung D, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA (2004) Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am J Physiol Gastrointest Liver Physiol 286(5): G752–761

    Article  Google Scholar 

  81. Geier A, Wagner M, Dietrich CG, Trauner M (2007) Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta 1773(3):283–308

    Article  PubMed  CAS  Google Scholar 

  82. Zollner G, Fickert P, Silbert D et al (2002) Induction of short heterodimer partner 1 precedes downregulation of Ntcp in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 282(1):G184–191

    Google Scholar 

  83. Geier A, Zollner G, Dietrich CG et al (2005) Cytokine-independent repression of rodent Ntcp in obstructive cholestasis. Hepatology 41(3):470–477

    Article  PubMed  CAS  Google Scholar 

  84. Denson LA, Sturm E, Echevarria W et al (2001) The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 121(1):140–147

    Article  PubMed  CAS  Google Scholar 

  85. Lee YK, Dell H, Dowhan DH, Hadzopoulou-Cladaras M, Moore DD (2000) The orphan nuclear receptor SHP inhibits hepatocyte nuclear factor 4 and retinoid X receptor transactivation: two mechanisms for repression. Mol Cell Biol 20(1):187–195

    Article  PubMed  CAS  Google Scholar 

  86. Li D, Zimmerman TL, Thevananther S, Lee HY, Kurie JM, Karpen SJ (2002) Interleukin-1 beta-mediated suppression of RXR:RAR transactivation of the Ntcp promoter is JNK-dependent. J Biol Chem 277(35):31416–31422

    Article  PubMed  CAS  Google Scholar 

  87. Zollner G, Wagner M, Fickert P et al (2005) Role of nuclear receptors and hepatocyte-enriched transcription factors for Ntcp repression in biliary obstruction in mouse liver. Am J Physiol Gastrointest Liver Physiol 289(5):G798–805

    Article  CAS  Google Scholar 

  88. Eloranta JJ, Jung D, Kullak-Ublick GA (2006) The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma coactivator-1alpha, and suppressed by bile acids via a small heterodimer partner-depende. Mol Endocrinol 20(1):65–79

    Article  PubMed  CAS  Google Scholar 

  89. Shneider BL, Fox VL, Schwarz KB et al (1997) Hepatic basolateral sodium-dependent-bile acid transporter expression in two unusual cases of hypercholanemia and in extrahepatic biliary atresia. Hepatology 25(5):1176–1183

    Article  PubMed  CAS  Google Scholar 

  90. Zollner G, Fickert P, Zenz R et al (2001) Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 33(3): 633–646

    Article  PubMed  CAS  Google Scholar 

  91. Zollner G, Fickert P, Silbert D et al (2003) Adaptive changes in hepatobiliary transporter expression in primary biliary cirrhosis. J Hepatol 38(6):717–727

    Article  PubMed  CAS  Google Scholar 

  92. Zollner G, Marschall HU, Wagner M, Trauner M (2006) Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm 3(3):231–251

    Article  PubMed  CAS  Google Scholar 

  93. Jung D, Podvinec M, Meyer UA et al (2002) Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastro­enterology 122(7):1954–1966

    Article  PubMed  CAS  Google Scholar 

  94. Shi X, Bai S, Ford AC et al (1995) Stable inducible expression of a functional rat liver organic anion transport protein in HeLa cells. J Biol Chem 270(43):25591–25595

    Article  PubMed  CAS  Google Scholar 

  95. Kullak-Ublick GA, Stieger B, Hagenbuch B, Meier PJ (2000) Hepatic transport of bile salts. Semin Liver Dis 20(3): 273–292

    Article  PubMed  CAS  Google Scholar 

  96. Meier PJ, Stieger B (2002) Bile salt transporters. Annu Rev Physiol 64:635–661

    Article  PubMed  CAS  Google Scholar 

  97. Keppler D, Konig J (2000) Hepatic secretion of conjugated drugs and endogenous substances. Semin Liver Dis 20(3): 265–272

    Article  PubMed  CAS  Google Scholar 

  98. Cui Y, Konig J, Buchholz JK, Spring H, Leier I, Keppler D (1999) Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 55(5):929–937

    PubMed  CAS  Google Scholar 

  99. Dubuisson C, Cresteil D, Desrochers M, Decimo D, Hadchouel M, Jacquemin E (1996) Ontogenic expression of the Na(+)-independent organic anion transporting polypeptide (oatp) in rat liver and kidney. J Hepatol 25(6):932–940

    Article  PubMed  CAS  Google Scholar 

  100. Elferink RP, Ottenhoff R, van Marle J, Frijters CM, Smith AJ, Groen AK (1998) Class III P-glycoproteins mediate the formation of lipoprotein X in the mouse. J Clin Invest 102(9):1749–1757

    Article  PubMed  CAS  Google Scholar 

  101. Eloranta JJ, Kullak-Ublick GA (2005) Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 433(2):397–412

    Article  PubMed  CAS  Google Scholar 

  102. Trauner M, Fickert P, Wagner M (2007) MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 27(1):77–98

    Article  PubMed  CAS  Google Scholar 

  103. Hazard SE, Patel SB (2007) Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflugers Arch 453(5):745–752

    Article  PubMed  CAS  Google Scholar 

  104. Banales JM, Prieto J, Medina JF (2006) Cholangiocyte anion exchange and biliary bicarbonate excretion. WorldJ Gastroenterol 12(22):3496–3511

    PubMed  CAS  Google Scholar 

  105. Fickert P, Zollner G, Fuchsbichler A et al (2002) Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 123(4):1238–1251

    Article  PubMed  CAS  Google Scholar 

  106. Zollner G, Fickert P, Fuchsbichler A et al (2003) Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J Hepatol 39(4):480–488

    Article  PubMed  CAS  Google Scholar 

  107. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ (2001) Human bile salt export pump promoter is transactivated by the farnesoid X receptor/bile acid receptor. J Biol Chem 276(31):28857–28865

    Article  PubMed  CAS  Google Scholar 

  108. Gerloff T, Stieger B, Hagenbuch B et al (1998) The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 273(16):10046–10050

    Article  PubMed  CAS  Google Scholar 

  109. Plass JR, Mol O, Heegsma J et al (2002) Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 35(3):589–596

    Article  PubMed  CAS  Google Scholar 

  110. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ (2000) Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102(6):731–744

    Article  PubMed  CAS  Google Scholar 

  111. Wagner M, Fickert P, Zollner G et al (2003) Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 125(3):825–838

    Article  PubMed  CAS  Google Scholar 

  112. Honjo Y, Sasaki S, Kobayashi Y, Misawa H, Nakamura H (2006) 1, 25-dihydroxyvitamin D3 and its receptor inhibit the chenodeoxycholic acid-dependent transactivation by farnesoid X receptor. J Endocrinol 188(3):635–643

    Article  PubMed  CAS  Google Scholar 

  113. Gascon-Barre M, Demers C, Mirshahi A, Neron S, Zalzal S, Nanci A (2003) The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology 37(5):1034–1042

    Article  PubMed  CAS  Google Scholar 

  114. Kast HR, Goodwin B, Tarr PT et al (2001) Regulation of multidrug resistance-associated protein 2 (MRP2;ABCC2) by the nuclear receptors PXR, FXR, and CAR. J Biol Chem 12:12

    Google Scholar 

  115. Huang L, Zhao A, Lew JL, et al (2003) Farnesoid X-receptor activates transcription of the phospholipid pump MDR3. J Biol Chem. 2003 Dec 19;278(51):51085–51090

    Google Scholar 

  116. Kok T, Bloks VW, Wolters H et al (2003) Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice. Biochem J 369(3):539–547

    Article  PubMed  CAS  Google Scholar 

  117. Liu Y, Binz J, Numerick MJ, et al (2003) Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest. 2003 Dec;112(11):1678–1687

    Google Scholar 

  118. Schuetz EG, Strom S, Yasuda K et al (2001) Disrupted bile acid homeostasis reveals an unexpected interaction among nuclear hormone receptors, transporters, and cytochrome P450. J Biol Chem 276(42):39411–39418

    Article  PubMed  CAS  Google Scholar 

  119. Teng S, Jekerle V, Piquette-Miller M (2003) Induction of ABCC3 (MRP3) by pregnane X receptor activators. Drug Metab Dispos 31(11):1296–1299

    Article  PubMed  CAS  Google Scholar 

  120. McCarthy TC, Li X, Sinal CJ (2005) Vitamin D receptor-dependent regulation of colon multidrug resistance-associated protein 3 gene expression by bile acids. J Biol Chem 280(24):23232–23242

    Article  PubMed  CAS  Google Scholar 

  121. Wagner M, Halilbasic E, Marschall HU et al (2005) CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepa­tology 42(2):420–430

    Article  PubMed  CAS  Google Scholar 

  122. Cherrington NJ, Hartley DP, Li N, Johnson DR, Klaassen CD (2002) Organ distribution of multidrug resistance proteins 1, 2, and 3 (Mrp1, 2, and 3) mRNA and hepatic induction of Mrp3 by constitutive androstane receptor activators in rats. J Pharmacol Exp Ther 300(1):97–104

    Article  PubMed  CAS  Google Scholar 

  123. Maher JM, Cheng X, Slitt AL, Dieter MZ, Klaassen CD (2005) Induction of the multidrug resistance-associated protein family of transporters by chemical activators of receptor-mediated pathways in mouse liver. Drug Metab Dispos 33(7):956–962

    Article  PubMed  CAS  Google Scholar 

  124. Zollner G, Wagner M, Moustafa T et al (2006) Coordinated induction of bile acid detoxification and alternative elimination in mice: role of FXR-regulated organic solute transporter-alpha/beta in the adaptive response to bile acids. Am J Physiol Gastrointest Liver Physiol 290(5): G923–932

    Article  Google Scholar 

  125. Boyer JL, Trauner M, Mennone A et al (2006) Upregulation of a basolateral FXR-dependent bile acid efflux transporter OSTalpha-OSTbeta in cholestasis in humans and rodents. Am J Physiol Gastrointest Liver Physiol 290(6): G1124–1130

    Article  CAS  Google Scholar 

  126. Lee H, Zhang Y, Lee FY, Nelson SF, Gonzalez FJ, Edwards PA (2006) FXR regulates organic solute transporters alpha and beta in the adrenal gland, kidney, and intestine. J Lipid Res 47(1):201–214

    Article  PubMed  CAS  Google Scholar 

  127. Baumgartner G, Pusl T (2008) Medical treatment of cholestatic liver disease. Clin Liver Dis 12(1):53–80

    Article  Google Scholar 

  128. Tanaka H, Makino I (1992) Ursodeoxycholic acid-dependent activation of the glucocorticoid receptor. Biochem Biophys Res Commun 188(2):942–948

    Article  PubMed  CAS  Google Scholar 

  129. Miura T, Ouchida R, Yoshikawa N et al (2001) Functional modulation of the glucocorticoid receptor and suppression of NF-kappaB-dependent transcription by ursodeoxycholic acid. J Biol Chem 276(50):47371–47378

    Article  PubMed  CAS  Google Scholar 

  130. Pascussi JM, Busson-Le Coniat M, Maurel P, Vilarem MJ (2003) Transcriptional analysis of the orphan nuclear receptor constitutive androstane receptor (NR1I3) gene promoter: identification of a distal glucocorticoid response element. Mol Endocrinol 17(1):42–55

    Article  PubMed  CAS  Google Scholar 

  131. Bodin K, Bretillon L, Aden Y et al (2001) Antiepileptic drugs increase plasma levels of 4beta-hydroxycholesterol in humans: evidence for involvement of cytochrome p450 3A4. J Biol Chem 276(42):38685–38689

    Article  PubMed  CAS  Google Scholar 

  132. Ellis E, Axelson M, Abrahamsson A et al (2003) Feedback regulation of bile acid synthesis in primary human hepatocytes: evidence that CDCA is the strongest inhibitor. Hepatology 38(4):930–938

    PubMed  CAS  Google Scholar 

  133. Lew JL, Zhao A, Yu J et al (2004) The farnesoid X receptor controls gene expression in a ligand- and promoter-selective fashion. J Biol Chem 279(10):8856–8861

    Article  PubMed  CAS  Google Scholar 

  134. Gerk PM, Li W, Megaraj V, Vore M (2007) Human multidrug resistance protein 2 transports the therapeutic bile salt tauroursodeoxycholate. J Pharmacol Exp Ther 320(2): 893–899

    Article  PubMed  CAS  Google Scholar 

  135. Paumgartner G, Beuers U (2002) Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 36(3):525–531

    Article  PubMed  CAS  Google Scholar 

  136. Trauner M, Graziadei IW (1999) Review article: mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases. Aliment Pharmacol Ther 13(8):979–996

    Article  PubMed  CAS  Google Scholar 

  137. Kast HR, Goodwin B, Tarr PT et al (2002) Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem 277(4):2908–2915

    Article  PubMed  CAS  Google Scholar 

  138. Yu J, Lo JL, Huang L et al (2002) Lithocholic acid decreases expression of bile salt export pump through farnesoid X receptor antagonist activity. J Biol Chem 277(35):31441–31447

    Article  PubMed  CAS  Google Scholar 

  139. Claudel T, Sturm E, Kuipers F, Staels B (2004) The farnesoid X receptor: a novel drug target? Expert Opin Investig Drugs 13(9):1135–1148

    Article  PubMed  CAS  Google Scholar 

  140. Moschetta A, Bookout AL, Mangelsdorf DJ (2004) Prevention of cholesterol gallstone disease by FXR agonists in a mouse model. Nat Med 10(12):1352–1358

    Article  PubMed  CAS  Google Scholar 

  141. Grundy SM, Ahrens EH Jr, Salen G (1971) Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J Lab Clin Med 78(1):94–121

    PubMed  CAS  Google Scholar 

  142. Heaton KW (1977) Disturbances of bile acid metabolism in intestinal disease. Clin Gastroenterol 6(1):69–89

    PubMed  CAS  Google Scholar 

  143. Buchwald H, Varco RL, Matts JP et al (1990) Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N Engl J Med 323(14): 946–955

    Article  PubMed  CAS  Google Scholar 

  144. Shepherd J, Packard CJ, Morgan HG, Third JL, Stewart JM, Lawrie TD (1979) The effects of cholestyramine on high density lipoprotein metabolism. Atherosclerosis 33(4):433–444

    Article  PubMed  CAS  Google Scholar 

  145. Brensike JF, Levy RI, Kelsey SF et al (1984) Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Type II Coronary Intervention Study. Circulation 69(2):313–324

    PubMed  CAS  Google Scholar 

  146. Levy RI, Brensike JF, Epstein SE et al (1984) The influence of changes in lipid values induced by cholestyramine and diet on progression of coronary artery disease: results of NHLBI Type II Coronary Intervention Study. Circulation 69(2):325–337

    PubMed  CAS  Google Scholar 

  147. Kuriyama M, Tokimura Y, Fujiyama J, Utatsu Y, Osame M (1994) Treatment of cerebrotendinous xanthomatosis: effects of chenodeoxycholic acid, pravastatin, and combined use. J Neurol Sci 125(1):22–28

    Article  PubMed  CAS  Google Scholar 

  148. Leiss O, von Bergmann K (1982) Different effects of chenodeoxycholic acid and ursodeoxycholic acid on serum lipoprotein concentrations in patients with radiolucent gallstones. Scand J Gastroenterol 17(5):587–592

    Article  PubMed  CAS  Google Scholar 

  149. Iglesias A, Arranz M, Alvarez JJ et al (1996) Cholesteryl ester transfer activity in liver disease and cholestasis, and its relation with fatty acid composition of lipoprotein lipids. Clin Chim Acta 248(2):157–174

    Article  PubMed  CAS  Google Scholar 

  150. Claudel T, Sturm E, Duez H et al (2002) Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 109(7):961–971

    PubMed  CAS  Google Scholar 

  151. Melter M, Rodeck B, Kardorff R et al (2000) Progressive familial intrahepatic cholestasis: partial biliary diversion normalizes serum lipids and improves growth in noncirrhotic patients. Am J Gastroenterol 95(12):3522–3528

    Article  PubMed  CAS  Google Scholar 

  152. Albrink MJ, Man EB (1959) Serum triglycerides in coronary artery disease. Archives of Internal Medicine. 103: 4–8

    CAS  Google Scholar 

  153. Goldstein JL, Schrott HG, Hazzard WR, Bierman EL, Motulsky AG (1973) Hyperlipidemia in coronary heart disease II Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 52(7):1544–1568

    Article  PubMed  CAS  Google Scholar 

  154. Brunzell JD, Schrott HG, Motulsky AG, Bierman EL (1976) Myocardial infarction in the familial forms of hypertriglyceridemia. Metabolism 25(3):313–320

    Article  PubMed  CAS  Google Scholar 

  155. Genest JJ Jr, Martin-Munley SS, McNamara JR et al (1992) Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85(6):2025–2033

    PubMed  Google Scholar 

  156. Bateson MC, Maclean D, Evans JR, Bouchier IA (1978) Chenodeoxycholic acid therapy for hypertriglyceridaemia in men. Br J Clin Pharmacol 5(3):249–254

    PubMed  CAS  Google Scholar 

  157. Begemann F (1978) Influence of chenodeoxycholic acid on the kinetics of endogenous triglyceride transport in man. Eur J Clin Invest 8(5):283–288

    Article  PubMed  CAS  Google Scholar 

  158. Camarri E, Fici F, Marcolongo R (1978) Influence of chenodeoxycholic acid on serum triglycerides in patients with primary hypertriglyceridemia. Int J Clin Pharmacol Biopharm 16(11):523–526

    PubMed  CAS  Google Scholar 

  159. Camarri E, Marcolongo R, Zaccherotti L, Marini G (1978) The hypotriglyceridemic effect of chenodeoxycholic acid in type IV hyperlipemia. Biomedicine 29(6):193–198

    PubMed  CAS  Google Scholar 

  160. Duane WC (1995) Abnormal bile acid absorption in familial hypertriglyceridemia. J Lipid Res 36(1):96–107

    PubMed  CAS  Google Scholar 

  161. Duane WC, Hartich LA, Bartman AE, Ho SB (2000) Diminished gene expression of ileal apical sodium bile acid transporter explains impaired absorption of bile acid in patients with hypertriglyceridemia. J Lipid Res 41(9): 1384–1389

    PubMed  CAS  Google Scholar 

  162. Angelin B (1995) 1994 Mack-Forster Award Lecture Review Studies on the regulation of hepatic cholesterol metabolism in humans. Eur J Clin Invest 25(4):215–224

    Article  PubMed  CAS  Google Scholar 

  163. Angelin B, Einarsson K, Hellstrom K, Leijd B (1978) Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia. J Lipid Res 19(8):1017–1024

    PubMed  CAS  Google Scholar 

  164. Molgaard J, von Schenck H, Olsson AG (1989) Comparative effects of simvastatin and cholestyramine in treatment of patients with hypercholesterolaemia. Eur J Clin Pharmacol 36(5):455–460

    Article  PubMed  CAS  Google Scholar 

  165. Pullinger CR, Eng C, Salen G et al (2002) Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hyper­cholesterolemic phenotype. J Clin Invest 110(1): 109–117

    PubMed  CAS  Google Scholar 

  166. Claudel T, Inoue Y, Barbier O et al (2003) Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125(2):544–555

    Article  PubMed  CAS  Google Scholar 

  167. Duran-Sandoval D, Mautino G, Martin G et al (2004) Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 53(4):890–898

    Article  PubMed  CAS  Google Scholar 

  168. DenBesten L, Reyna RH, Connor WE, Stegink LD (1973) The different effects on the serum lipids and fecal steroids of high carbohydrate diets given orally or intravenously.J Clin Invest 52(6):1384–1393

    Article  PubMed  CAS  Google Scholar 

  169. Stacpoole PW, Grundy SM, Swift LL, Greene HL, Sloni AE, Burr IM (1981) Elevated cholesterol and bile acid synthesis in an adult patient with homozygous familial hypercholesterolemia Reduction by a high glucose diet. J Clin Invest 68(5):1166–1171

    Article  PubMed  CAS  Google Scholar 

  170. Dawes LG, Laut HC, Woodruff M (2007) Decreased bile acid synthesis with total parenteral nutrition. Am J Surg 194(5):623–627

    Article  PubMed  CAS  Google Scholar 

  171. Ma K, Saha PK, Chan L, Moore DD (2006) Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 116(4):1102–1109

    Article  PubMed  CAS  Google Scholar 

  172. Zhang Y, Lee FY, Barrera G et al (2006) Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 103(4):1006–1011

    Article  PubMed  CAS  Google Scholar 

  173. Ludwig J, Viggiano TR, McGill DB, Oh BJ (1980) Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55(7): 434–438

    PubMed  CAS  Google Scholar 

  174. Shibata M, Kihara Y, Taguchi M, Tashiro M, Otsuki M (2007) Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care 30(11):2940–2944

    Article  PubMed  CAS  Google Scholar 

  175. Bedogni G, Miglioli L, Masutti F, Tiribelli C, Marchesini G, Bellentani S (2005) Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology 42(1):44–52

    Article  PubMed  Google Scholar 

  176. Bedogni G, Miglioli L, Masutti F et al (2007) Incidence and natural course of fatty liver in the general population: the Dionysos study. Hepatology 46(5):1387–1391

    Article  PubMed  Google Scholar 

  177. Neuschwander-Tetri BA, Caldwell SH (2003) Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37(5):1202–1219

    Article  PubMed  Google Scholar 

  178. Adams LA, Lymp JF, St Sauver J et al (2005) The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129(1):113–121

    Article  PubMed  Google Scholar 

  179. Ekstedt M, Franzen LE, Mathiesen UL et al (2006) Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 44(4):865–873

    Article  PubMed  CAS  Google Scholar 

  180. Targher G, Bertolini L, Poli F et al (2005) Nonalcoholic fatty liver disease and risk of future cardiovascular events among type 2 diabetic patients. Diabetes 54(12): 3541–3546

    Article  PubMed  CAS  Google Scholar 

  181. Huang J, Iqbal J, Saha PK et al (2007) Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver. Hepatology 46(1): 147–157

    Article  PubMed  CAS  Google Scholar 

  182. Nishigori H, Tomura H, Tonooka N et al (2001) Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proc Natl Acad Sci U S A 98(2):575–580

    Article  PubMed  CAS  Google Scholar 

  183. Echwald SM, Andersen KL, Sorensen TI et al (2004) Mutation analysis of NR0B2 among 1545 Danish men identifies a novel c.278G>A (p.G93D) variant with reduced functional activity. Hum Mutat 24(5):381–387

    Article  PubMed  CAS  Google Scholar 

  184. Hung CC, Farooqi IS, Ong K et al (2003) Contribution of variants in the small heterodimer partner gene to birthweight, adiposity, and insulin levels: mutational analysis and association studies in multiple populations. Diabetes 52(5):1288–1291

    Article  PubMed  CAS  Google Scholar 

  185. Mitchell SM, Weedon MN, Owen KR et al (2003) Genetic variation in the small heterodimer partner gene and young-onset type 2 diabetes, obesity, and birth weight in U.K. subjects. Diabetes 52(5):1276–1279

    Article  PubMed  CAS  Google Scholar 

  186. Maruyama T, Tanaka K, Suzuki J et al (2006) Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J Endocrinol 191(1):197–205

    Article  PubMed  CAS  Google Scholar 

  187. Vassileva G, Golovko A, Markowitz L et al (2006) Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem J 398(3):423–430

    Article  PubMed  CAS  Google Scholar 

  188. Watanabe M, Houten SM, Mataki C et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075): 484–489

    Article  PubMed  CAS  Google Scholar 

  189. Lean ME, James WP, Jennings G, Trayhurn P (1986) Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci (Lond) 71(3): 291–297

    CAS  Google Scholar 

  190. Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W (1997) Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J Lipid Res 38(10):2125–2133

    PubMed  CAS  Google Scholar 

  191. Huttunen P, Hirvonen J, Kinnula V (1981) The occurrence of brown adipose tissue in outdoor workers. Eur J Appl Physiol Occup Physiol 46(4):339–345

    Article  PubMed  CAS  Google Scholar 

  192. Zancanaro C, Pelosi G, Accordini C, Balercia G, Sbabo L, Cinti S (1994) Immunohistochemical identification of the uncou­­pling protein in human hibernoma. Biol Cell 80(1): 75–78

    Article  PubMed  CAS  Google Scholar 

  193. Lean ME, James WP, Jennings G, Trayhurn P (1986) Brown adipose tissue in patients with phaeochromocytoma. Int J Obes 10(3):219–227

    PubMed  CAS  Google Scholar 

  194. Ricquier D, Nechad M, Mory G (1982) Ultrastructural and biochemical characterization of human brown adipose tissue in pheochromocytoma. J Clin Endocrinol Metab 54(4): 803–807

    Article  PubMed  CAS  Google Scholar 

  195. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1): 277–359

    Article  PubMed  CAS  Google Scholar 

  196. Yoshimura T, Kurita C, Nagao T et al (1997) Inhibition of tumor necrosis factor-alpha and interleukin-1-beta production by beta-adrenoceptor agonists from lipopolysaccharide-stimulated human peripheral blood mononuclear cells. Pharmacology 54(3):144–152

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Trauner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Claudel, T., Trauner, M. (2010). Bile Acids and Their Receptors. In: Dufour, JF., Clavien, PA. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00150-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00150-5_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00149-9

  • Online ISBN: 978-3-642-00150-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics