Skip to main content

Bile Acids as Regulatory Signalling Molecules

  • Chapter
  • First Online:
Mammalian Sterols
  • 267 Accesses

Abstract

Bile acids (BAs) are a large family of molecules that have a steroidal structure and are synthesized from cholesterol in the liver. BAs are physiological detergents important for the emulsification of dietary fats, drugs, and lipid-soluble vitamins in the intestine, and their subsequent absorption and transport to the liver for metabolism is followed by distribution to other tissues and organs. BAs also act as signalling molecules and are important for the regulation of their own synthesis, uptake and secretion as well as the control of cholesterol synthesis and the regulation of lipid and glucose metabolism. These processes are accomplished via the direct activation of the nuclear receptor farnesoid X receptor (FXR), TGR5, the pregnane X receptor (PXR) and the vitamin D receptor (VDR). In addition, other nuclear receptors, such as the constitutive androstane receptor (CAR) and the liver X receptor (LXR), can be indirectly influenced by BA, and these receptors, in turn, influence BA synthesis via feedback mechanisms and have a considerable influence on the metabolic processes of the entire organism. This chapter will focus on BA homeostasis, which is affected by BA synthesis, metabolism and disposition in the liver and intestine. Furthermore, the roles of BAs as signalling molecules and therapeutic drugs to treat several diseases and metabolic imbalances will be discussed. Since there are cross-species differences in the synthesis and metabolism of BAs, the chapter will focus on humans and mice and will point out differences between these two species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Keitel V, Häussinger D. Perspective: TGR5 (Gpbar-1) in liver physiology and disease. Clin Res Hepatol Gastroenterol. 2012;36:412–9. https://doi.org/10.1016/j.clinre.2012.03.008.

    Article  CAS  PubMed  Google Scholar 

  2. Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y. Species differences in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol. 2018;38:1323–35. https://doi.org/10.1002/jat.3644.

    Article  CAS  PubMed  Google Scholar 

  3. Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y. Species differences in bile acids II. Bile acid metabolism. J Appl Toxicol. 2018;38:1336–52. https://doi.org/10.1002/jat.3645.

    Article  CAS  PubMed  Google Scholar 

  4. Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015;56:1085–99. https://doi.org/10.1194/jlr.R054114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiang JY. Recent advances in understanding bile acid homeostasis. F1000Res. 2017;6:2029. https://doi.org/10.12688/f1000research.12449.1.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chiang JYL. Bile acid metabolism and signaling in liver disease and therapy. Liver Res. 2017;1:3–9. https://doi.org/10.1016/j.livres.2017.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ellis E, Goodwin B, Abrahamsson A, Liddle C, Mode A, Rudling M, Bjorkhem I, Einarsson C. Bile acid synthesis in primary cultures of rat and human hepatocytes. Hepatology. 1998;27:615–20. https://doi.org/10.1002/hep.510270241.

    Article  CAS  PubMed  Google Scholar 

  8. Šarenac TM, Mikov M. Bile acid synthesis: from nature to the chemical modification and synthesis and their applications as drugs and nutrients. Front Pharmacol. 2018;9:939. https://doi.org/10.3389/fphar.2018.00939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huijghebaert SM, Hofmann AF. Pancreatic carboxypeptidase hydrolysis of bile acid-amino conjugates: selective resistance of glycine and taurine amidates. Gastroenterology. 1986;90:306–15.

    Article  CAS  PubMed  Google Scholar 

  10. Hofmann AF. The enterohepatic circulation of bile acids in mammals: form and functions. Front Biosci (Landmark Ed). 2009;14:2584–98.

    Article  CAS  Google Scholar 

  11. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall H-U, Bamberg K, Angelin B, Hyötyläinen T, Orešič M, Bäckhed F. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17:225–35. https://doi.org/10.1016/j.cmet.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  12. Tu H, Okamoto AY, Shan B. FXR, a bile acid receptor and biological sensor. Trends Cardiovasc Med. 2000;10:30–5.

    Article  CAS  PubMed  Google Scholar 

  13. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89:331–40. https://doi.org/10.1016/S0092-8674(00)80213-5.

    Article  CAS  PubMed  Google Scholar 

  14. Santamaría E, Rodríguez-Ortigosa CM, Uriarte I, Latasa MU, Urtasun R, Alvarez-Sola G, Bárcena-Varela M, Colyn L, Arcelus S, Jiménez M, Deutschmann K, Peleteiro-Vigil A, Gómez-Cambronero J, Milkiewicz M, Milkiewicz P, Sangro B, Keitel V, Monte MJ, Marin JJ, Fernández-Barrena MG, Ávila MA, Berasain C. The epidermal growth factor receptor ligand amphiregulin protects from cholestatic liver injury and regulates bile acids synthesis. Hepatology. 2018;69:1632. https://doi.org/10.1002/hep.30348.

    Article  CAS  Google Scholar 

  15. Hanley J, Dhar DK, Mazzacuva F, Fiadeiro R, Burden JJ, Lyne A-M, Smith H, Straatman-Iwanowska A, Banushi B, Virasami A, Mills K, Lemaigre FP, Knisely AS, Howe S, Sebire N, Waddington SN, Paulusma CC, Clayton P, Gissen P. Vps33b is crucial for structural and functional hepatocyte polarity. J Hepatol. 2017;66:1001–11. https://doi.org/10.1016/j.jhep.2017.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci. 2008;65:2461–83. https://doi.org/10.1007/s00018-008-7568-6.

    Article  CAS  PubMed  Google Scholar 

  17. Baier PK, Hempel S, Waldvogel B, Baumgartner U. Zonation of hepatic bile salt transporters. Dig Dis Sci. 2006;51:587–93. https://doi.org/10.1007/s10620-006-3174-3.

    Article  CAS  PubMed  Google Scholar 

  18. Li T, Chiang JYL. Bile acids as metabolic regulators. Curr Opin Gastroenterol. 2015;31:159–65. https://doi.org/10.1097/MOG.0000000000000156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ashby K, Navarro Almario EE, Tong W, Borlak J, Mehta R, Chen M. Review article: therapeutic bile acids and the risks for hepatotoxicity. Aliment Pharmacol Ther. 2018;47:1623–38. https://doi.org/10.1111/apt.14678.

    Article  CAS  PubMed  Google Scholar 

  20. Garcia M, Thirouard L, Sedès L, Monrose M, Holota H, Caira F, Volle DH, Beaudoin C. Nuclear receptor metabolism of bile acids and xenobiotics: a coordinated detoxification system with impact on health and diseases. Int J Mol Sci. 2018;19:E3630. https://doi.org/10.3390/ijms19113630.

    Article  CAS  PubMed  Google Scholar 

  21. Keitel V, Häussinger D. Role of TGR5 (GPBAR1) in liver disease. Semin Liver Dis. 2018;38:333–9. https://doi.org/10.1055/s-0038-1669940.

    Article  CAS  PubMed  Google Scholar 

  22. Malerød L, Sporstøl M, Juvet LK, Mousavi SA, Gjøen T, Berg T, Roos N, Eskild W. Bile acids reduce SR-BI expression in hepatocytes by a pathway involving FXR/RXR, SHP, and LRH-1. Biochem Biophys Res Commun. 2005;336:1096–105. https://doi.org/10.1016/j.bbrc.2005.08.237.

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein J, Levy C. Novel and emerging therapies for cholestatic liver diseases. Liver Int. 2018;38:1520–35. https://doi.org/10.1111/liv.13880.

    Article  PubMed  Google Scholar 

  24. Trauner M, Fuchs CD, Halilbasic E, Paumgartner G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology. 2017;65:1393–404. https://doi.org/10.1002/hep.28991.

    Article  PubMed  Google Scholar 

  25. Chiang JYL. Bile acids: regulation of synthesis. J Lipid Res. 2009;50:1955–66. https://doi.org/10.1194/jlr.R900010-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalaany NY, Mangelsdorf DJ. LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol. 2006;68:159–91. https://doi.org/10.1146/annurev.physiol.68.033104.152158.

    Article  CAS  PubMed  Google Scholar 

  27. Bhalla S, Ozalp C, Fang S, Xiang L, Kemper JK. Ligand-activated pregnane X receptor interferes with HNF-4 signaling by targeting a common coactivator PGC-1alpha. Functional implications in hepatic cholesterol and glucose metabolism. J Biol Chem. 2004;279:45139–47. https://doi.org/10.1074/jbc.M405423200.

    Article  CAS  PubMed  Google Scholar 

  28. Juřica J, Dovrtělová G, Nosková K, Zendulka O. Bile acids, nuclear receptors and cytochrome P450. Physiol Res. 2016;65:S427–40.

    Article  PubMed  Google Scholar 

  29. Copple BL, Li T. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res. 2016;104:9–21. https://doi.org/10.1016/j.phrs.2015.12.007.

    Article  CAS  PubMed  Google Scholar 

  30. Gascon-Barré M, Demers C, Mirshahi A, Néron S, Zalzal S, Nanci A. The normal liver harbors the vitamin D nuclear receptor in nonparenchymal and biliary epithelial cells. Hepatology. 2003;37:1034–42. https://doi.org/10.1053/jhep.2003.50176.

    Article  CAS  PubMed  Google Scholar 

  31. Li T, Chiang JYL. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev. 2014;66:948–83. https://doi.org/10.1124/pr.113.008201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D’Aldebert E, Biyeyeme Bi Mve M-J, Mergey M, Wendum D, Firrincieli D, Coilly A, Fouassier L, Corpechot C, Poupon R, Housset C, Chignard N. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology. 2009;136:1435–43. https://doi.org/10.1053/j.gastro.2008.12.040.

    Article  CAS  PubMed  Google Scholar 

  33. Han S, Li T, Ellis E, Strom S, Chiang JYL. A novel bile acid-activated vitamin D receptor signaling in human hepatocytes. Mol Endocrinol. 2010;24:1151–64. https://doi.org/10.1210/me.2009-0482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Belorusova AY, Rochel N. Structural studies of vitamin D nuclear receptor ligand-binding properties. Vitam Horm. 2016;100:83–116. https://doi.org/10.1016/bs.vh.2015.10.003.

    Article  CAS  PubMed  Google Scholar 

  35. Li T, Chiang JYL. Nuclear receptors in bile acid metabolism. Drug Metab Rev. 2013;45:145–55. https://doi.org/10.3109/03602532.2012.740048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014;46:302–12. https://doi.org/10.1016/j.dld.2013.10.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reich M, Klindt C, Deutschmann K, Spomer L, Häussinger D, Keitel V. Role of the G protein-coupled bile acid receptor TGR5 in liver damage. Dig Dis. 2017;35:235–40. https://doi.org/10.1159/000450917.

    Article  PubMed  Google Scholar 

  38. Malhi H, Camilleri M. Modulating bile acid pathways and TGR5 receptors for treating liver and GI diseases. Curr Opin Pharmacol. 2017;37:80–6. https://doi.org/10.1016/j.coph.2017.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Keitel V, Reinehr R, Gatsios P, Rupprecht C, Görg B, Selbach O, Häussinger D, Kubitz R. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology. 2007;45:695–704. https://doi.org/10.1002/hep.21458.

    Article  CAS  PubMed  Google Scholar 

  40. Lavoie B, Balemba OB, Godfrey C, Watson CA, Vassileva G, Corvera CU, Nelson MT, Mawe GM. Hydrophobic bile salts inhibit gallbladder smooth muscle function via stimulation of GPBAR1 receptors and activation of KATP channels. J Physiol (Lond). 2010;588:3295–305. https://doi.org/10.1113/jphysiol.2010.192146.

    Article  CAS  Google Scholar 

  41. Donepudi AC, Boehme S, Li F, Chiang JYL. G protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis. Hepatology. 2016;65:813–27. https://doi.org/10.1002/hep.28707.

    Article  CAS  PubMed  Google Scholar 

  42. Li G, Guo L. Farnesoid X receptor, the bile acid sensing nuclear receptor, in liver regeneration. Acta Pharm Sin B. 2015;5:93–8. https://doi.org/10.1016/j.apsb.2015.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Palmeira CM, Rolo AP. Mitochondrially-mediated toxicity of bile acids. Toxicology. 2004;203:1–15. https://doi.org/10.1016/j.tox.2004.06.001.

    Article  CAS  PubMed  Google Scholar 

  44. Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol. 2012;56:1283–92. https://doi.org/10.1016/j.jhep.2012.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Allen K, Jaeschke H, Copple BL. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol. 2011;178:175–86. https://doi.org/10.1016/j.ajpath.2010.11.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raimondi F, Santoro P, Barone MV, Pappacoda S, Barretta ML, Nanayakkara M, Apicella C, Capasso L, Paludetto R. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol. 2008;294:G906–13. https://doi.org/10.1152/ajpgi.00043.2007.

    Article  CAS  PubMed  Google Scholar 

  47. Mertens KL, Kalsbeek A, Soeters MR, Eggink HM. Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci. 2017;11:617. https://doi.org/10.3389/fnins.2017.00617.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heubi JE, Setchell KDR, Bove KE. Inborn errors of bile acid metabolism. Clin Liver Dis. 2018;22:671–87. https://doi.org/10.1016/j.cld.2018.06.006.

    Article  PubMed  Google Scholar 

  49. Santiago P, Scheinberg AR, Levy C. Cholestatic liver diseases: new targets, new therapies. Therap Adv Gastroenterol. 2018;11:1756284818787400. https://doi.org/10.1177/1756284818787400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Y, Rong Z, Xiang D, Zhang C, Liu D. Detection technologies and metabolic profiling of bile acids: a comprehensive review. Lipids Health Dis. 2018;17:121. https://doi.org/10.1186/s12944-018-0774-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang H, Duan Z. Bile acids and the potential role in primary biliary cirrhosis. Digestion. 2016;94:145–53. https://doi.org/10.1159/000452300.

    Article  CAS  PubMed  Google Scholar 

  52. Ronca V, Carbone M, Bernuzzi F, Malinverno F, Mousa HS, Gershwin ME, Invernizzi P. From pathogenesis to novel therapies in the treatment of primary biliary cholangitis. Expert Rev Clin Immunol. 2017;13:1121–31. https://doi.org/10.1080/1744666X.2017.1391093.

    Article  CAS  PubMed  Google Scholar 

  53. Rajani C, Jia W. Bile acids and their effects on diabetes. Front Med. 2018;12:608. https://doi.org/10.1007/s11684-018-0644-x.

    Article  PubMed  Google Scholar 

  54. Erstad DJ, Farrar CT, Ghoshal S, Masia R, Ferreira DS, Chen Y-CI, Choi J-K, Wei L, Waghorn PA, Rotile NJ, Tu C, Graham-O’Regan KA, Sojoodi M, Li S, Li Y, Wang G, Corey KE, Or YS, Jiang L, Tanabe KK, Caravan P, Fuchs BC. Molecular magnetic resonance imaging accurately measures the antifibrotic effect of EDP-305, a novel farnesoid X receptor agonist. Hepatol Commun. 2018;2:821–35. https://doi.org/10.1002/hep4.1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nevens F, Andreone P, Mazzella G, Strasser SI, Bowlus C, Invernizzi P, Drenth JPH, Pockros PJ, Regula J, Beuers U, Trauner M, Jones DE, Floreani A, Hohenester S, Luketic V, Shiffman M, van Erpecum KJ, Vargas V, Vincent C, Hirschfield GM, Shah H, Hansen B, Lindor KD, Marschall H-U, Kowdley KV, Hooshmand-Rad R, Marmon T, Sheeron S, Pencek R, MacConell L, Pruzanski M, Shapiro D. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med. 2016;375:631–43. https://doi.org/10.1056/NEJMoa1509840.

    Article  CAS  PubMed  Google Scholar 

  56. Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, Kowdley KV, McCullough A, Terrault N, Clark JM, Tonascia J, Brunt EM, Kleiner DE, Doo E. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–65. https://doi.org/10.1016/S0140-6736(14)61933-4.

    Article  CAS  PubMed  Google Scholar 

  57. Iracheta-Vellve A, Calenda CD, Petrasek J, Ambade A, Kodys K, Adorini L, Szabo G. FXR and TGR5 agonists ameliorate liver injury, steatosis, and inflammation after binge or prolonged alcohol feeding in mice. Hepatol Commun. 2018;2:1379–91. https://doi.org/10.1002/hep4.1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liles JT, Karnik S, Hambruch E, Kremoser C, Birkel M, Watkins WJ, Tumas D, Breckenridge D, French D. Fxr agonism by Gs-9674 decreases steatosis and fibrosis in a murine model of nash. J Hepatol. 2016;64:S169. https://doi.org/10.1016/S0168-8278(16)01682-2.

    Article  Google Scholar 

  59. Silveira MG, Lindor KD. Investigational drugs in phase II clinical trials for primary biliary cholangitis. Expert Opin Investig Drugs. 2017;26:1115–21. https://doi.org/10.1080/13543784.2017.1371135.

    Article  CAS  PubMed  Google Scholar 

  60. Roda A, Pellicciari R, Gioiello A, Neri F, Camborata C, Passeri D, de FF, Spinozzi S, Colliva C, Adorini L, Montagnani M, Aldini R. Semisynthetic bile acid FXR and TGR5 agonists: physicochemical properties, pharmacokinetics, and metabolism in the rat. J Pharmacol Exp Ther. 2014;350:56–68. https://doi.org/10.1124/jpet.114.214650.

    Article  CAS  PubMed  Google Scholar 

  61. Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435–40. https://doi.org/10.1074/jbc.M209706200.

    Article  CAS  PubMed  Google Scholar 

  62. Li B, Yang N, Li C, Li C, Gao K, Xie X, Dong X, Yang J, Yang Q, Tong Z, Lu G, Li W. INT-777, a bile acid receptor agonist, extenuates pancreatic acinar cells necrosis in a mouse model of acute pancreatitis. Biochem Biophys Res Commun. 2018;503:38–44. https://doi.org/10.1016/j.bbrc.2018.05.120.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madlen Matz-Soja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matz-Soja, M. (2020). Bile Acids as Regulatory Signalling Molecules. In: Rozman, D., Gebhardt, R. (eds) Mammalian Sterols . Springer, Cham. https://doi.org/10.1007/978-3-030-39684-8_5

Download citation

Publish with us

Policies and ethics