Skip to main content

Symbiosis: The Art of Living

  • Chapter
  • First Online:
Symbiotic Fungi

Part of the book series: Soil Biology ((SOILBIOL,volume 18))

Abstract

Plants are the very foundations of life on the earth. Almost all the divisions of plant kingdom — namely bryophytes, pteridophytes, gymnosperms, and angiosperms — form a symbiotic relationship with bacteria, cyanobacteria, or actinomycetes. Symbiotic relationships in which both the species of the association benefit are mutualistic. Mutualistic relations between plants and fungi are recognized, as Mycorrhizae are quite common in nature. The fungus helps the host plant absorb inorganic nitrogen and phosphorus from the soil. Some mycorrhizal fungi also secrete antibiotics which may help protect their host from invasion by parasitic fungi and bacteria. One of the most important examples of mutualism in the overall economy of the biosphere is the symbiotic relationship between certain nitrogen-fixing bacteria and their legume hosts. This chapter deals with all the types of mutualistic symbiotic relationship formed in the plant kingdom.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anyia AO, Archambault DJ, Slaski JJ (2004) Growth-promoting effects of the diazotroph Azorhizobium caulinodans on Canadian wheat cultivars. Fourth International Crop Science Congress, http://www.cropscience.org.au/icsc2004/poster/2/5/6/863_anyiaa.htm

  • Bačkora M, Pawlik-Skowrońskab B, Tomkoc J, Buďováa J, Sanità di Toppid L (2006) Response to copper stress in aposymbiotically grown lichen mycobiont Cladonia cristatella: uptake, viability, ergosterol and production of non-protein thiols. Mycol Res 110:994–999

    Article  CAS  Google Scholar 

  • Becker A, Niehaus K, Puhler A (2000) The role of rhizobial extracellular polysaccharides (EPS) in the Sinorhizobium meliloti-alfalfa symbiosis. In: Triplett EW (eds) Prokaryotic nitrogen fixation: a model for analysis of a biological process. Horizon Scientific, Norfolk, UK, pp 433–448

    Google Scholar 

  • Bonfante P (1991) Biologia delle micorrize nel Centro di Studio sulla Micologia: il passata, il presente e il futuro. In: Estratto da Funghi, Piante e Suolo. Quarat’anni di ricerche del Centro di Studio sulla Micologia del Terreno nel centenario della nascita del suo fondatore Beniamino Peyronel. Centro di Studio sulla Micologia del Terreno, CNR, Torino, pp 135–156

    Google Scholar 

  • Boogerda FC, van Rossuma D (1997) Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev 21:5–27

    Article  Google Scholar 

  • Brewin JJ (1991) Development of the legume root nodule. Am Rev Cell Biol 7:191–226

    CAS  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulation. In: Varma A, Chincholkar S (eds) Microbial siderophores. Springer, Berlin, pp 3–5

    Google Scholar 

  • Dazzo F, Hubbell D (1982) Control of root hair infection. In: Broughton W (ed) Ecology of nitrogen fixation, vol II. Rhizobium. Oxford University Press, Oxford, pp 274–310

    Google Scholar 

  • Dazzo F, Wopereis JL (2000) Unraveling the infection process in the Rhizobium-legume symbiosis by microscopy. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Horizon Scientific, Norfolk, UK, pp 312–318

    Google Scholar 

  • Dazzo F, Hollingsworth R, Philip-Hollingsworth S, Robles M, Olen T, Salzwedel J, Djordjevic M, Rolfe B (1988) Recognition process in the Rhizobium trifolii-white clover symbiosis. In: Bothe H, de Bruijn FJ, Newton WE (eds) Nitrogen fixation: hundred years after. Gustav Fischer, Stuttgart, pp 112–114

    Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel KH (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci USA 103:18450–18457

    Article  CAS  PubMed  Google Scholar 

  • Devin RM, Witham FH (1986) Plant physiology, 4th edn. CBS, New Delhi, pp 163–166

    Google Scholar 

  • Felle HH, Kondorosi E, Kondorosi A, Schultze M (1998) The role of ion fluxes in Nod factor signaling in Medicago sativa. Plant J 13:455–451

    Article  CAS  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gonzalez V, Lozano L, Castillo-Ramirez S, Gonzalez IH, Bustos P, Santamaria RI, Fernandez JL, Acosta JL Davila G (2008) Evolutionary genomics of the nitrogen fixing symbiotic bacteria. In: Nautiyal CS, Dion P (eds) Molecular mechanism of plant and microbe coexistence. Springer, Berlin, pp 183–186

    Google Scholar 

  • Halverson LJ, Stacey E (1986) Signal exchange in plant-microbe interactions. Microbiol Rev 50:193–225

    CAS  PubMed  Google Scholar 

  • Hawker LE, Harrison RW, Nicholls VO, Ham AM (1957) Studies on vesicular-arbuscular endophytes. I. A strain of Pythium ultimum Trow. in roots of Allium ursinum L. and other plants. Trans Br Mycol Soc 40:375–390

    Article  Google Scholar 

  • Kelley AP (1931) The concept of mycorrhiza. Mycologia 23:147–151

    Article  Google Scholar 

  • Kishinevsky BD, Law JI, Strijdom BW (1988) Detection of lectins is nodulated peanut and soybean plants. Planta 176:10–18

    Article  CAS  Google Scholar 

  • Kluge M, Schubler W (2002) The Nostoc Geosiphon endocytobiosis. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Springer, Berlin, pp 19–30

    Google Scholar 

  • Koide RT, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163

    Article  PubMed  Google Scholar 

  • Lersten NR, Horner HT (1976) Bacterial leaf nodule symbiosis in angiosperms with emphasis on Rubiaceae and Myrsinaceae. Bot Rev 42:145–214

    Article  Google Scholar 

  • Lohman ML (1927) Occurrence of mycorrhiza in Iowa forest plants. Univ Iowa Stud Nat Hist 11:33–58

    Google Scholar 

  • Lutzoni et al (2004) Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot 91:1446–1480

    Article  Google Scholar 

  • Mathur A, Mathur AK, Verma P, Yadav S, Gupta ML, Darokar MP (2008) Biological hardening and genetic fidelity testing of micro-cloned progeny of Chlorophytum borivilianum Sant. Et Fernand. Aust J Bot 7:1046–1053

    CAS  Google Scholar 

  • Miller AL, Raven JA, Sprent JI, Weisenseel MH (1986) Endogenous ion currents traverse roots and hairs of Trifolium repens. Plant Cell Environ 9:79–83

    Google Scholar 

  • Nicholls VO (1952) Studies on the association between certain soil fungi and the roots of some members of the Liliiflorae. PhD dissertation, Department of Botany, University of Bristol

    Google Scholar 

  • Peters GA (1977) The azolla–Anabaena azollae symbiosis. In: Hollaender A (ed) Genetic engineering for nitrogen fixation. Plenum, London, pp 231–258

    Google Scholar 

  • Prescott LM, Harley JP, Klein DA (1996) Microbiology, 3rd edn. WCB, Chicago, pp 496, 871

    Google Scholar 

  • Rai MK, Varma A (2005) Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica. Electron J Biotechnol 8:107–112

    Article  Google Scholar 

  • Rai MK, Singh AN, Arya D, Varma A (2001) Positive growth responses of the medicinal plants Withania somnifera and Spilanthes calva to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    Article  Google Scholar 

  • Rashid A (1998) An introduction to bryophyta (diversity, development and differentiation), 1st edn. Vikas, New Delhi, p 59

    Google Scholar 

  • Remy W, Taylor TN, Haas H, Kerp H (1994) Four-hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA. 91:11841–11843

    Article  CAS  PubMed  Google Scholar 

  • Sahay NS, Varma A (1999) Piriformospora indica: a new biological hardening tool for micropropagated plants. FEMS Microbiol Lett 181:297–302

    Article  CAS  PubMed  Google Scholar 

  • Sahay NS, Varma A (2000) Biological approach towards increasing the survival rates of micropropagated plants. Curr Sci 78:126–129

    Google Scholar 

  • Sambamurty AVSS (2005) A textbook of bryophytes, pteridophytes, gymnosperms and paleobotany. I K International, New Delhi, pp 335–338

    Google Scholar 

  • Schubler A, Kluge M (2001) Geosiphon pyriforme, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Hock B (ed) The mycota IX fungal association. Springer, Berlin, pp 151–161

    Google Scholar 

  • Shahollari B, Vadassery J, Varma A, Oelmüller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R (2005) The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor which binds to a conserved motif in their promoters. J Biol Chem 280:26241–26247

    Article  CAS  PubMed  Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Singh AR, Singh AN, Varma A (2002) Piriformospora indica – in vitro raised leguminous plants: a new dimension in establishment and phyto-promotion. Indian J Biotechnol 1:372–376

    Google Scholar 

  • Singh AN, Singh AR, Kumari M, Rai MK, Varma A (2003) Biotechnology importance of Piriformospora indica — a novel symbiotic mycorrhiza-like fungus: an overview. Indian J Biotechnol 2:65–75

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego, pp 605–606

    Google Scholar 

  • Smith G, Swort S, Lugtenberg V, Kigne JW (1992) Molecular mechanism of attachment of bacteria to plant roots. Mol Microbiol 6:2897–2903

    Article  Google Scholar 

  • Sprent JI (1989) Tansley review no. 15: which steps are essential for the formation of functional legume nodules? New Physiol 111:129–153

    Article  Google Scholar 

  • Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular arbuscular mycorrhiza: an overview. In: Mukherji KG (ed) Concepts in mycorrhizal research. Kluwer, Dordrecht, pp 1–39

    Google Scholar 

  • Trappe JM (2005) A.B. Frank and mycorrhizae: the challenge to evolutionary and ecologic theory. Mycorrhiza 15:277–281

    Article  PubMed  Google Scholar 

  • Trappe JM, Berch SM (1985) The prehistory of mycorrhizae: A.B. Frank’s predecessors. In: Proceedings of the 6th North Americanconference on mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, OR, USA, pp 2–11

    Google Scholar 

  • Van Egeraat AWSM (1975) The possible role of homoserine in the development of Rhizobium leguminosarum in the rhizosphere of pea seedlings. Plant Soil 42:381–386

    Article  Google Scholar 

  • Varma A (1998) Mycorrhizae, the friendly fungi: what we know, what we should know and how do we know? In: Varma A (ed) Mycorrhiza manual. Springer, Berlin, pp 1–24

    Google Scholar 

  • Varma A, Verma S, Sudha, Sahay N, Britta B, Franken P (1999) Piriformospora indica — a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi. Applied Environ Microbiol 65:2741–2744

    CAS  Google Scholar 

  • Varma A, Singh A, Sudha, Sahay NS, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2001) In: Hock B (ed) Piriformospora indica: axenically culturable mycorrhiza-like endosymbiotic fungus. The Mycota IX. Springer, Berlin, pp 151–161

    Google Scholar 

  • Vassa J, de Billy F, Camut S, Truchet E (1990) Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol 172:4295–4306

    Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, von Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102:13386–13391

    Article  CAS  PubMed  Google Scholar 

  • Xavier LJC, Germida JJ (2002) Response of lentil under controlled conditions to co-inoculation with arbuscular mycorrhizal fungi and rhizobia varying in efficacy. Soil Biol Biochem 34:181–188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Ms. Sreelekha Chatterjee for helpful contribution in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, A., Varma, A. (2009). Symbiosis: The Art of Living. In: Varma, A., Kharkwal, A.C. (eds) Symbiotic Fungi. Soil Biology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95894-9_1

Download citation

Publish with us

Policies and ethics