Skip to main content

Central Chemosensitivity in Mammals

  • Chapter
  • First Online:
Cardio-Respiratory Control in Vertebrates

Abstract

More than a century has passed since the beginning of direct experimentation on control of ventilation, and the ensuing years have brought considerable insight into the mechanisms of this control. Much of what we know about cellular chemosensitivity in mammals comes from a limited number of species; yet, given the diversity of circumstances in which mammals exist, their potential has been greatly underused. Here we review some of the environmental situations for plasticity of mammalian central chemosensitivity and function of chemosensors. “Normal” breathing patterns change during sleep, hibernation, and exercise, and central chemosensitivity must be altered during acclimation or adaptation to altitude, burrowing, or disease states. Where central chemosensitive cells are located, and what qualifies a cell as chemosensitive, is currently debated. The chemosensitivity of these cells changes over development, and the signaling mechanisms of these cells vary between chemosensitive regions, probably accounting for plasticity in response to environmental perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akilesh, M.R., Kamper, M., Li, A. and Nattie, E.E. (1997). Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats. Journal of Applied Physiology 82, 469–479

    Article  PubMed  CAS  Google Scholar 

  • Ar, A., Arieli, R. and Shkolnik, A. (1977). Blood–gas properties and function in the fossorial mole rat under normal and hypoxic-hypercapnic atmospheric conditions. Respiration Physiology 30, 201–219

    Article  PubMed  CAS  Google Scholar 

  • Arieli, R. and Ar, A. (1979). Ventilation of a fossorial mammal (Spallax ehrenbergi) in hypoxic and hypercapnic conditions. Journal of Applied Physiology: Respiratory, Environmental, and Exercise Physiology 47, 1011–1017

    CAS  Google Scholar 

  • Ballantyne, D.J., Andrzejewski, M., Mückenhoff, K. and Scheid, P. (2004). Rhythms, synchrony and electrical coupling in the Locus coeruleus. Respiratory Physiology and Neurobiology 143, 199–214

    Article  PubMed  CAS  Google Scholar 

  • Bavis, R.W., Johnson, R.A., Ording, K.M., Otis, J.P. and Mitchell, G.S. (2006). Respiratory plasticity after perinatal hypercapnia in rats. Respiratory Physiology and Neurobiology 153, 78–91

    Article  PubMed  Google Scholar 

  • Bayliss, D.A., Talley, E.M., Sirois, J.E. and Lei, Q. (2001). TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Respiration Physiology 129, 159–174

    Article  PubMed  CAS  Google Scholar 

  • Berger, P.J., Walker, A.M., Horne, R., Brodecky, V., Wilkinson, M.H., Wilson, F. and Maloney, J.E. (1986). Phasic respiratory activity in the fetal lamb during late gestation and labour. Respiration Physiology 65, 55–68

    Article  PubMed  CAS  Google Scholar 

  • Bernard, D.G., Li, A. and Nattie, E.E. (1996). Evidence for central chemoreception in the medullary raphe. Journal of Applied Physiology 80, 108–115

    PubMed  CAS  Google Scholar 

  • Biancardi, V., Bicégo, K.C., Almeida, M.C. and Gargaglioni, L.H. (2007). Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pfluger's Archives: European Journal of Physiology 455, 1119–1128

    Article  CAS  Google Scholar 

  • Bickler, P.E. (1984). CO2 balance of a heterothermic rodent: comparison of sleep, torpor, and awake states. American Journal of Physiology Regulatory Integrative and Comparative Physiology 246, R49–R55

    CAS  Google Scholar 

  • Birchard, G.F., Boggs, D.F. and Tenney, S.M. (1984). Effect of perinatal hypercapnia on the adult ventilatory response to carbon dioxide. Respiration Physiology 57, 341–347

    Article  PubMed  CAS  Google Scholar 

  • Boggs, D.F. (2002). Interactions between locomotion and ventilation in tetrapods. Comparative Biochemistry and Physiology Part A 133, 269–288

    Article  Google Scholar 

  • Boggs, D.F., Frappell, P.B. and Kilgore, D.L.J. (1998). Ventilatory, cardiovascular and metabolic responses to hypoxia and hypercapnia in the armadillo. Respiration Physiology 113, 101–109

    Article  PubMed  CAS  Google Scholar 

  • Boggs, D.F., Kilgore, D.L., Jr. and Birchard, G.F. (1984). Respiratory physiology of burrowing mammals and birds. Comparative Biochemistry and Physiology Part A 77, 1–7

    Google Scholar 

  • Boutilier, R.G. (2001). Mechanisms of cell survival in hypoxia and hypothermia. The Journal of Experimental Biology 204, 3171–3181

    PubMed  CAS  Google Scholar 

  • Bouyer, P., Bradley, S.R., Zhao, J., Wang, W., Richerson, G.B. and Boron, W.F. (2004). Effect of extracellular acid–base disturbances on the intracellular pH of neurones cultured from rat medullary raphe or hippocampus. Journal of Physiology 559.1, 85–101

    Article  CAS  Google Scholar 

  • Bradley, S.R., Pieribone, V.A., Wang, W., Severson, C.A., Jacobs, R.A. and Richerson, G.B. (2002). Chemosensitive serotonergic neurons are closely associated with large medullary arteries. Nature Neuroscience 5, 401–402

    Article  PubMed  CAS  Google Scholar 

  • Bradley, P.M.J., Murphy, D., Kasparov, S., Croker, J. and Paton, J.F.R. (2008). A micro-optrode for simultaneous extracellular electrical and intracellular optical recording from neurons in an intact oscillatory neuronal network. Journal of Neuroscience Methods 168, 383–395

    Article  PubMed  CAS  Google Scholar 

  • Cao, Y. and Song, G. (2006). Purinergic modulation of respiration via medullary raphe nuclei in rats. Respiratory Physiology and Neurobiology

    Google Scholar 

  • Carey, H.V., Andrews, M.T. and Martin, S.L. (2003). Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiological Reviews 83, 1153–1181

    PubMed  CAS  Google Scholar 

  • Carroll, J.L. (2003). Developmental plasticity in respiratory control. Journal of Applied Physiology 94, 375–389

    Article  PubMed  CAS  Google Scholar 

  • Chapman, R.C. and Bennett, A.F. (1975). Physiological correlates of burrowing in rodents. Comparative Biochemistry and Physiology Part A 51, 599–603

    Article  CAS  Google Scholar 

  • Chen, L.-W., Wei, L.-C., Lin, H.-L. and Rao, Z.-R. (2000). Noradrenergic neurons expressing substance P receptor (NK1) in the locus coeruleus complex: a double immunofluorescence study in the rat. Brain Research 873, 155–159

    Article  PubMed  CAS  Google Scholar 

  • Coates, E.L., Li, A. and Nattie, E.E. (1993). Widespread sites of brainstem ventilatory chemoreceptors. Journal of Applied Physiology 75, 5–14

    PubMed  CAS  Google Scholar 

  • Conrad, S.C., Mulkey, D.K., Ritucci, N.A., Dean, J.B. and Putnam, R.W. (2004). Development of chemosensitive neurons in the NTS. The FASEB Journal 18, A337

    Google Scholar 

  • Conrad, S.C., Mulkey, D.K., Ritucci, N.A., Dean, J.B. and Putnam, R.W. (2005). Development of chemosensitivity in neurons from the nucleus tractus solitarius (NTS). The FASEB Journal 19, A649

    Google Scholar 

  • D'Agostino, D.P., Putnam, R.W. and Dean, J.B. (2007). Superoxide (O2 ) production in CA1 neurons of rat hippocampal slices exposed to graded levels of oxygen. Journal of Neurophysiology 98, 1030–1041

    Article  PubMed  CAS  Google Scholar 

  • Dahan, A. and Teppema, L.J. (2003). Influence of anaesthesia and analgesia on the control of breathing. British Journal of Anaesthesia 91, 40–49

    Article  PubMed  CAS  Google Scholar 

  • Dahan, A., Nieuwenhuijs, D. and Teppema, L.J. (2007). Plasticity of central chemoreceptors: effect of bilateral carotid body resection on central CO2 sensitivity. PLoS Medicine 4, 1195–1204

    Article  CAS  Google Scholar 

  • Darden, T.R. (1972). Respiratory adaptations of a fossorial mammal, the Pocket Gopher (Thomomys bottae). Journal of Comparative Physiology 78, 121–137

    Article  CAS  Google Scholar 

  • Darnall, R.A., Ariagno, R.L. and Kinney, H.C. (2006). The late preterm infant and the control of breathing, sleep, and brainstem development: a review. Clinics in Perinatology 33, 883–914

    Article  PubMed  Google Scholar 

  • Davis, S.E., Solhied, G., Castillo, M., Dwinell, M., Brozoski, D. and Forster, H.V. (2006). Postnatal developmental changes in CO2 sensitivity in rats. Journal of Applied Physiology 101, 1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Dean, J.B., Bayliss, D.A., Erickson, J.T., Lawing, W.L. and Millhorn, D.E. (1990a). Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuroscience 36, 207–216

    Article  PubMed  CAS  Google Scholar 

  • Dean, J.B., Gallman, E.A. and Millhorn, D.E. (1990b). Electrophysiology and morphology of CO2-sensitive neurons in the dorsal vagal complex studied in vitro. Society of Neuroscience Abstracts 16, 1235

    Google Scholar 

  • Dean, J.B., Lawing, W.L. and Millhorn, D.E. (1989). CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarius. Experimental Brain Research 76, 656–661

    Article  CAS  Google Scholar 

  • Dean, J.B., Huang, R.-Q., Erlichman, J.S., Southard, T.L. and Hellard, D.T. (1997). Cell–cell coupling occurs in dorsal medullary neurons after minimizing anatomical-coupling artifacts. Neuroscience 80, 21–40

    Article  PubMed  CAS  Google Scholar 

  • Dean, J.B., Mulkey, D.K., Garcia, A.J., Putnam, R.W. and Henderson, R.A.I. (2003). Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures. Journal of Applied Physiology 95, 883–909

    PubMed  CAS  Google Scholar 

  • Dempsey, J.A. (2005). Crossing the apnoeic threshold: causes and consequences. Experimental Physiology 90, 13–24

    Article  PubMed  Google Scholar 

  • Dias, M.B., Nucci, T.B., Margatho, L.O., Antunes-Rodrigues, J., Gargaglioni, L.H. and Branco, L.G.S. (2007). Raphe magnus nucleus is involved in ventilator but not hypothermic response to CO2. Journal of Applied Physiology 103, 1780–1788

    Article  PubMed  Google Scholar 

  • Drew, K.L., Buck, C.L., Barnes, B.M., Christian, S.L., Rasley, B.T. and Harris, M.B. (2007). Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. Journal of Neurochemistry 102, 1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil, V., Ramanantsoa, N., Trochet, D., Vaubourg, V., Amiel, J., Gallego, J., Brunet, J.-F. and Goridis, C. (2008). A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnea, and specific loss of parafacial neurons. Proceedings of the National Academy of Science 105, 1067–1072

    Article  CAS  Google Scholar 

  • Dunroy, H.M., Adams, L., Corfield, D.R. and Morrell, M.J. (2003). CO2 retention in lung disease; could there be a pre-existing difference in respiratory physiology. Respiratory Physiology and Neurobiology 136, 179–186

    Article  PubMed  Google Scholar 

  • Eynan, M., Arieli, R. and Adir, Y. (2005). Response to CO2 in novice closed-circuit apparatus divers and after 1 year of active oxygen diving at shallow depths. Journal of Applied Physiology 98, 1653–1659

    Article  PubMed  Google Scholar 

  • Feldman, J.L., Mitchell, G.S. and Nattie, E.E. (2003). Breathing: rhythmicity, plasticity, chemosensitivity. Annual Review of Neuroscience 26, 239–266

    Article  PubMed  CAS  Google Scholar 

  • Fencl, V., Miller, T.B. and Pappenheimer, J.R. (1966). Studies on the respiratory response to disturbances of acid–base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. American Journal of Physiology 210, 459–472

    PubMed  CAS  Google Scholar 

  • Ferretti, G. (2001). Extreme human breath-hold diving. European Journal of Applied Physiology 84, 254–271

    Article  PubMed  CAS  Google Scholar 

  • Fidone SJ, Gonzalez C (1986). Initiation and control of chemoreceptor activity in the carotid body. In: Cherniak NS, Widdicomb JG (eds) The Respiratory System, Vol 2; Control of Breathing, Part 1. In: Fishman AP (section ed) Handbook of Physiology: Section 3: the Respiratory System. American Physiological Society, Bethesda, pp 247–312

    Google Scholar 

  • Filosa, J.A. and Putnam, R.W. (2003). Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels. American Journal of Physiology (Cell Physiology) 284, C145–C155

    CAS  Google Scholar 

  • Filosa, J.A., Dean, J.B. and Putnam, R.W. (2002). Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. Journal of Physiology 541, 493–509

    Article  PubMed  CAS  Google Scholar 

  • Gaultier, C. and Gallego, J. (2005). Development of respiratory control: evolving concepts and perspectives. Respiratory Physiology and Neurobiology 149, 3–15

    Article  PubMed  Google Scholar 

  • Georgopoulos D (2006). Effects of mechanical ventilation on control of breathing. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. McGraw-Hill, New York, pp 715–728

    Google Scholar 

  • Gillespie, J.R., Landgren, G.L. and Leith, D.E. (1991). 1:2 ratio of breathing to stride frequencies in a galloping horse breathing 6% CO2. Equine Exercise Physiology 3, 66–70

    Google Scholar 

  • Guyenet, P.G., Stornetta, R.L., Bayliss, D.A. and Mulkey, D.K. (2005). Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors. Experimental Physiology 90, 247–257

    Article  PubMed  CAS  Google Scholar 

  • Guyenet, P.G., Stornetta, R.L. and Bayliss, D.A. (2008). Retrotrapezoid nucleus and central chemoreception. Journal of Physiology 586, 2043–2048

    Article  PubMed  CAS  Google Scholar 

  • Haldane, J.S. and Priestley, J.G. (1905). The regulation of the lung-ventilation. Journal of Physiology 32, 225–266

    PubMed  CAS  Google Scholar 

  • Hartzler, L.K., Dean, J.B. and Putnam, R.W. (2007). Developmental changes in the chemosensitive response in locus coeruleus neurons from neonatal rats. Society for Neuroscience Abstracts, 297–298

    Google Scholar 

  • Hartzler LK, Dean JB and Putnam RW (2008a). The chemosensitive response of neurons from the Locus Coeruleus (LC) to hypercapnic acidosis with clamped intracellular pH. In: Poulin M, Wilson RJA (eds) Integration in Respiratory Control: from Genes to Systems, vol. 605. Springer, New York, pp 333–337

    Google Scholar 

  • Hartzler, L.K., Dean, J.B. and Putnam, R.W. (2008b). Contributions of CO2, pHi, and pHo to the signaling pathway of chemosensitive neurons in the locus coeruleus. FASEB Journal 21.761.12

    Google Scholar 

  • Heeringa, J., Berkenbosch, A., de Goede, J. and Olievier, C.N. (1979). Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia. Respiration Physiology 37, 365–379

    Article  PubMed  CAS  Google Scholar 

  • Hodges, M. R., Martino, P., Davis, S., Opansky, C., Pan, L.G. and Forster, H.V. (2004). Effects of breathing on focal acidosis at multiple medullary raphe sites in awake goats. Journal of Applied Physiology 97, 2303–2309

    Article  PubMed  CAS  Google Scholar 

  • Hodges, M.R., Tattersall, G.J., Harris, M.B., McEvoy, S.D., Richerson, D.N., Deneris, E.S., Johnson, R.L., Chen, Z.-F. and Richerson, G.B. (2008). Defects in breathing and thermoregulation in mice with near-complete absence of central serotonin neurons. Journal of Neuroscience 28, 2495–2505

    Article  PubMed  CAS  Google Scholar 

  • Jack, S., Rossiter, H.B., Pearson, M.G., Ward, S.A., Warburton, C.J. and Whipp, B.J. (2004). Ventilatory responses to inhaled carbon dioxide, hypoxia, and exercise in idiopathic hyperventilation. American Journal of Respiratory and Critical Care Medicine 170, 118–125

    Article  PubMed  Google Scholar 

  • Jansen, A. H., Ioffe, S., Russell, B. J. and Chernick, V. (1982). Influence of sleep state on the response to hypercapnia in fetal lambs. Respiration Physiology 48, 125–142.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S.M., Haxhiu, M.A. and Richerson, G.B. (2008). GFP expressing locus coeruleus neurons from Prp57 transgenic mice exhibit CO2/H+ responses in primary cell culture. Journal of Applied Physiology 105(4):1301–1311

    Article  PubMed  CAS  Google Scholar 

  • Kara, T., Narkiewicz, K. and Somers, V.K. (2003). Chemoreflexes — physiology and clinical implications. Acta Physiologica Scandinavica 177, 377–384

    Article  PubMed  CAS  Google Scholar 

  • Kline, D.D., Takacs, K.N., Ficker, E. and Kunze, D.L. (2002). Dopamine modulates synaptic transmission in the nucleus of the solitary tract. Journal of Neurophysiology 88, 2736–2744

    Article  PubMed  CAS  Google Scholar 

  • Kofstad, J. (1996). Blood gases and hypothermia: some theoretical and practical considerations. Scandinavian Journal of Clinical Laboratory Investigation 56, 21–26

    Article  CAS  Google Scholar 

  • Kohin, S., Williams, T.M. and Ortiz, C.L. (1999). Effects of hypoxia and hypercapnia on aerobic metabolic processes in northern elephant seals. Respiration Physiology 117, 59–72

    Article  PubMed  CAS  Google Scholar 

  • Krogh, A. (1929). The progress of physiology. American Journal of Physiology 90, 243–251

    Google Scholar 

  • Laffey JG and Kavanagh BP (2006). Permissive hypercapnia. In: Tobin MJ (ed) Principles and Practice of Mechanical Ventilation. McGraw-Hill, New York, pp 373–392

    Google Scholar 

  • Lassen, N.A. (1990). Is central chemoreceptor sensitive to intracellular rather than extracellular pH? Clinical Physiology 10, 311–319

    Article  PubMed  CAS  Google Scholar 

  • Lechner, A.J. (1976). Respiratory adaptations in burrowing pocket gophers from sea level and high altitude. Journal of Applied Physiology 41, 168–173

    PubMed  CAS  Google Scholar 

  • Leiter, J.C. and Bohm, I. (2007). Mechanisms of pathogenesis in the sudden infant death syndrome. Respiratory Physiology and Neurobiology 159, 127–138

    Article  PubMed  CAS  Google Scholar 

  • Leiter, J.C., Barrie, R., Hewitt, A., Graham, M. and Erlichman, J.S. (2003). Effect of pharmacological blockade of gap junctions in the retrotrapezoid nucleus on central respiratory control in the conscious rat. FASEB Journal 17, 58.1

    Google Scholar 

  • Li, A. and Nattie, E.E. (2006). Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability. Journal of Physiology 570, 385–396

    PubMed  CAS  Google Scholar 

  • Li, A., Zhou, S. and Nattie, E.E. (2006). Simultaneous inhibition of caudal medullary raphe and retrotrapezoid nucleus decreased breathing and the CO2 response in conscious rats. Journal of Physiology 577, 307–318

    Article  PubMed  CAS  Google Scholar 

  • Li A, Emond L, Nattie EE (2008). Brainstem catecholaminergic neurons modulate both respiratory and cardiovascular function. In: Poulin MJ, Wilson RJA (eds) Advances in Experimental Medicine and Biology: Integration in Respiratory Control, vol. 605. Springer, New York, pp 371–376

    Google Scholar 

  • Lipton, A.J., Johnson, M.A., Macdonald, T., Lieberman, M.W., Gozal, D. and Gaston, B. (2001). S-nitrosothiols signal the ventilatory response to hypoxia. Nature 413, 171–174

    Article  PubMed  CAS  Google Scholar 

  • Loeschcke, H.H. (1982). Central chemosensitivity and the reaction theory. Journal of Physiology 332, 1–24

    PubMed  CAS  Google Scholar 

  • Malan A (1982). Respiration and acid–base state in hibernation. In: Lyman CP, Willis JS, Malan A, Wang LCH (eds) Hibernation and Torpor in Mammals and Birds. Academic Press, New York, pp 237–282

    Google Scholar 

  • Malatesta, M., Biggiogera, M. and Zancanaro, C. (2007). Hypometabolic induced state: a potential tool in biomedicine and space exploration. Review of Environmental Sciences and Biotechnology 6, 47–60

    Article  CAS  Google Scholar 

  • Martino, P.F. and Putnam, R.W. (2007). The effect of 4-aminopyridine (4AP) on the hypercapnic response of locus coeruleus (LC) neuorns. Society for Neuroscience Abstracts

    Google Scholar 

  • Martino, P.F., Davis, S., Opansky, C., Krause, K., Bonis, J.M., Pan, L.G., Qian, B. and Forster, H.V. (2007). The cerebellar fastigial nucleus contributes to CO2−H+ ventilatory sensitivity in awake goats. Respiratory Physiology and Neurobiology 157, 242–251

    Article  PubMed  CAS  Google Scholar 

  • Masuda, Y., Yoshida, A., Hayashi, F., Sasaki, K. and Honda, Y. (1982). Attenuated ventilatory responses to hypercapnia and hypoxia in assisted breath-hold divers (Funado). Japanese Journal of Physiology 32, 327–336

    Article  PubMed  CAS  Google Scholar 

  • McArthur, M.D. and Milsom, W.K. (1991). Changes in ventilation and respiratory sensitivity associated with hibernation in Columbian (Spermophilus columbianus) and Golden-mantled (Spermophilus lateralis) Ground Squirrels. Physiological Zoology 64, 940–959

    Google Scholar 

  • Meir, J.U., Champagne, C.D., Costa, D.P. and Ponganis, P.J. (2008). Extreme blood oxygen depletion in diving elephant seals. The FASEB Journal 22, 757.7

    Google Scholar 

  • Mellen, N.M., Milsom, W.K. and Feldman, J.L. (2002). Hypothermia and recovery from respiratory arrest in a neonatal rat in vitro brain stem preparation. American Journal of Physiology Regulatory Integrative and Comparative Physiology 282, R484–R491

    CAS  Google Scholar 

  • Miles, R. (1983). Does low pH stimulate central chemoreceptors located near the ventral medullary surface? Brain Research 271, 349–353

    Article  PubMed  CAS  Google Scholar 

  • Milsom WK (1992) Control of breathing in hibernating mammals. In: Wood SC, Weber RE, Hargens AR, Millard RW (eds) Physiological Adaptations in Vertebrates: Respiration, Circulation, and Metabolism, vol. 56. Marcel Dekker, New York, pp 119–148

    Google Scholar 

  • Milsom, W.K. (1998). Phylogeny of respiratory chemoreceptor function in vertebrates. Zoology 101, 316–332

    Google Scholar 

  • Milsom WK, Osborne S, Chan PF, Hunter JD, MacLeod JZ (1993). Sleep, hypothermia, and hibernation: metabolic rate and the control of breathing pattern in Golden-mantled Ground Squirrels. In: Carey C, Florant GL, Wunder BA, Horwitz B (eds) Life in the Cold: Ecological, Physiological, and Molecular Mechanisms. Westview Press, Boulder, pp 233–240

    Google Scholar 

  • Mitchell, R.A., Loeschcke, H.H., Massion, W.H. and Severinghaus, J.W. (1963). Respiratory responses mediated through superficial chemosensitive areas on the medulla. Journal of Applied Physiology 18, 523–533

    CAS  Google Scholar 

  • Mortola JP (2001) Respiratory Physiology of Newborn Mammals: A Comparative Perspective. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Mulkey, D.K., Henderson, R.A.I., Olson, J.E., Putnam, R.W. and Dean, J.B. (2001). Oxygen measurements in brainstem slices exposed to normobaric hyperoxia and hyperbaric oxygen. Journal of Applied Physiology 90, 1887–1899

    Article  PubMed  CAS  Google Scholar 

  • Mulkey, D.K., Henderson, R.A.I., Putnam, R.W. and Dean, J.B. (2003). Hyperbaric oxygen and chemical oxidants stimulate CO2/H+ — sensitive neurons in rat brain stem slices. Journal of Applied Physiology 95, 910–921

    PubMed  CAS  Google Scholar 

  • Mulkey, D.K., Stornetta, R.L., Weston, M.C., Simmons, J.R., Parker, A., Bayliss, D.A. and Guyenet, P.G. (2004). Respiratory control by ventral surface chemoreceptor neurons in rats. Nature Neuroscience 7, 1360–1369

    Article  PubMed  CAS  Google Scholar 

  • Mulkey, D.K., Talley, E.M., Stornetta, R.L., Siegel, A.R., West, G.H., Chen, X., Sen, N., Mistry, A.M., Guyenet, P.G. and Bayliss, D.A. (2007). TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity. The Journal of Neuroscience 27, 14049–14058

    Article  PubMed  CAS  Google Scholar 

  • Muñoz-Cabello, A.M., Toledo-Aral, J.J., Lopez-Barneo, J. and Echevarria, M. (2005). Rat adrenal chromaffin cells are neonatal CO2 sensors. The Journal of Neuroscience 25, 6631–6640

    Article  PubMed  CAS  Google Scholar 

  • Nattie, E.E. (2000). Multiple sites for central chemoreception: their roles in response sensitivity and in sleep and wakefulness. Respiration Physiology 122, 223–235

    Article  PubMed  CAS  Google Scholar 

  • Nattie, E.E. (2001). Central chemosensitivity, sleep and wakefulness. Respiration Physiology 129, 257–268

    Article  PubMed  CAS  Google Scholar 

  • Nattie, E.E. (2006). Why do we have both peripheral and central chemoreceptors? Journal of Applied Physiology 100, 9–10

    Article  PubMed  Google Scholar 

  • Nattie, E.E. and Li, A. (2001). CO2 dialysis in the medullary raphe of the rat increases ventilation during sleep. Journal of Applied Physiology 90, 1247–1257

    PubMed  CAS  Google Scholar 

  • Nattie, E.E. and Li, A. (2002). Substance P-saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity. Journal of Physiology 544, 603–616

    Article  PubMed  CAS  Google Scholar 

  • Nattie, E.E. and Li, A. (2006). Central chemoreception 2005: a brief review. Autonomic Neuroscience: Basic and Clinical 126–127, 332–338

    Article  CAS  Google Scholar 

  • Nattie, E.E. and Li, A. (2009). Central chemoreception is a complex system function that involves multiple brainstem sites. Journal of Applied Physiology. In Press

    Google Scholar 

  • Nattie, E.E., Mills, J.W., Ou, L.C. and St. John, W.M. (1988). Kainic acid on the rostral ventrolateral medulla inhibits phrenic output and CO2 sensitivity. Journal of Applied Physiology 65, 1525–1534

    PubMed  CAS  Google Scholar 

  • Nattie, E.E., Richerson, G.B. and Lappi, D.A. (2004). Medullary serotonergic neurones and adjacent neurones that express neurokinin-1 receptors are both involved in chemoreception in vivo. Journal of Physiology 556, 235–253

    Article  PubMed  CAS  Google Scholar 

  • Neubauer, J.A. and Sunderram, J. (2004). Oxygen-sensing neurons in the central nervous system. Journal of Applied Physiology 96, 367–374

    Article  PubMed  CAS  Google Scholar 

  • Nichols, N.L., Hartzler, L.K., Dean, J.B. and Putnam, R.W. (2007). Chemosensitive response of individual nucleus tractus solitarius (NTS) neurons from adult rats. The FASEB Journal 21, A1443

    Google Scholar 

  • Nichols NL, Hartzler LK, Conrad SC, Dean JB and Putnam RW (2008). Intrinsic chemosensitivity of individual nucleus tractus solitarius (NTS) and locus coeruleus (LC) neurons from neonatal rats. In: Poulin M, Wilson RJA (eds) Integration in Respiratory Control: from Genes to Systems, vol. 605. Springer, New York, pp 348–352

    Google Scholar 

  • Nicol, S.C. and Andersen, N.A. (2003). Control of breathing in the echidna (Tachyglossus aculeatus) during hibernation. Comparative Biochemistry and Physiology Part A 136, 917–925

    Article  CAS  Google Scholar 

  • Oyamada, Y., Ballantyne, D.J., Mückenhoff, K. and Scheid, P. (1998). Respiration-modulated membrane-potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat. Journal of Physiology 513, 381–398

    Article  PubMed  CAS  Google Scholar 

  • Parer, J.T. and Hodson, W.A. (1974). Respiratory studies on monotremes. IV. Normal respiratory functions of echidnas and ventilatory response to inspired oxygen and carbon dioxide. Respiration Physiology 21, 307–316

    Article  PubMed  CAS  Google Scholar 

  • Parkos, C.A. and Wahrenbrock, E.A. (1987). Acute effects of hypercapnia and hypoxia on minute ventilation in unrestrained Weddell seals. Respiration Physiology 67, 197–207

    Article  PubMed  CAS  Google Scholar 

  • Paterson, D.S., Thompson, E.G. and Kinney, H.C. (2006). Serotonergic and glutamatergic neurons at the ventral medullary surface of the human infant: observations relevant to central chemosensitivity in early human life. Autonomic Neuroscience: Basic and Clinical 124, 112–124

    Article  CAS  Google Scholar 

  • Paton, J.F.R. (1996). A working heart–brainstem preparation of the mouse. Journal of Neuroscience Methods 65, 63–68

    Article  PubMed  CAS  Google Scholar 

  • Potter, S.J., Putnam, R.W. and Dean, J.B. (2004). Decreasing oxygen causes an acidification in neurons from respiratory regions of the medulla. The FASEB Journal 18, A1058

    Google Scholar 

  • Putnam, R.W., Filosa, J.A. and Ritucci, N.A. (2004). Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. American Journal of Physiology (Cell Physiology) 287, C1493

    Article  CAS  Google Scholar 

  • Putnam, R.W., Conrad, S.C., Gdovin, M.J., Erlichman, J.S. and Leiter, J.C. (2005). Neonatal maturation of the hypercapnic ventilatory response and central neural CO2 chemosensitivity. Respiratory Physiology and Neurobiology 149, 165–179

    Article  PubMed  Google Scholar 

  • Raley-Susman, K.M., Sapolsky, R.M. and Kopito, R.R. (1993). Cl/HCO3 exchange function differs in adult and fetal rat hippocampal neurons. Brain Research 614, 308–314

    Article  PubMed  CAS  Google Scholar 

  • Remmers, J.E. (2005). A century of control of breathing. American Journal of Respiratory and Critical Care Medicine 172, 6–11

    Article  PubMed  Google Scholar 

  • Remmers, J.E., Torgerson, C., Harris, M.B., Perry, S.F., Vasilakos, K. and Wilson, R.J.A. (2001). Evolution of central respiratory chemoreception: a new twist on an old story. Respiration Physiology 129, 211–217

    Article  PubMed  CAS  Google Scholar 

  • Richerson, G.B., Wang, W., Tiwari, J. and Bradley, S.R. (2001). Chemosensitivity of serotonergic neurons in the rostral ventral medulla. Respiration Physiology 129, 175–189

    Article  PubMed  CAS  Google Scholar 

  • Rigatto, H., Fitzgerald, S.F., Willis, M.A. and Yu, C. (1994). In search of the central respiratory neurons: culture of medullary fetal cells sensitive to CO2 and low pH. Biology of the Neonate 65, 149–155

    Article  PubMed  CAS  Google Scholar 

  • Ritucci, N.A., Erlichman, J.S., Dean, J.B. and Putnam, R.W. (1996). A fluorescence technique to measure intracellular pH of single neurons in brainstem slices. Journal of Neuroscience Methods 68, 149–163

    Article  PubMed  CAS  Google Scholar 

  • Ritucci, N.A., Dean, J.B. and Putnam, R.W. (1997). Intracellular pH response to hypercapnia in neurons from chemosensitive areas of the medulla. American Journal of Physiology (Regulatory, Integrative, and Comparative Physiology) 273, R433–R441

    CAS  Google Scholar 

  • Ritucci, N.A., Chambers-Kersh, L., Dean, J.B. and Putnam, R.W. (1998). Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive areas of the medulla. American Journal of Physiology (Regulatory, Integrative, and Comparative Physiology) 275, R1152–R1163

    CAS  Google Scholar 

  • Ritucci, N.A., Dean, J.B. and Putnam, R.W. (2005a). Somatic vs. dendritic responses to hypercapnia in chemosensitive locus coeruleus neurons from neonatal rats. American Journal of Physiology (Cell Physiology) 289, C1094–C1104

    Article  CAS  Google Scholar 

  • Ritucci, N.A., Erlichman, J.S., Leiter, J.C. and Putnam, R.W. (2005b). Response of membrane potential and intracellular pH to hypercapnia in neurons and astrocytes from rat retrotrapezoid nucleus. American Journal of Physiology (Regulatory, Integrative, and Comparative Physiology) 289, R851–R861

    Article  CAS  Google Scholar 

  • Rosenhain, F.R. and Penrod, K.E. (1951). Blood gas studies in the hypothermic dog. American Journal of Physiology 166, 55–61

    PubMed  CAS  Google Scholar 

  • Ruediger, J., Van Der Zee, E.A., Strijkstra, A.M., Aschoff, A., Daan, S. and Hut, R.A. (2007). Dynamics in the ultrastructure of asymmetric axospinous synapses in the frontal cortex of hibernating European Ground Squirrels (Spermophilus citellus). Synapse 61, 343–352

    Article  PubMed  CAS  Google Scholar 

  • Smith, C.A., Rodman, J.R., Chenuel, B.J.A., Henderson, K.S. and Dempsey, J.A. (2006). Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs peripheral chemoreceptors. Journal of Applied Physiology 100, 13–19

    Article  PubMed  CAS  Google Scholar 

  • Solomon, I.C., Edelman, N.H. and O'Neal III, M.H. (2000). CO2/H+ chemoreception in the cat pre-Botzinger complex in vivo. Journal of Applied Physiology 88, 1996–2007

    PubMed  CAS  Google Scholar 

  • Stornetta, R.L., Moreira, T.S., Takakura, A.C., Kang, B.J., Chang, D.A., West, G.H., Brunet, J.-F., Mulkey, D.K., Bayliss, D.A. and Guyenet, P.G. (2006). Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. Journal of Neuroscience 26, 10305–10314

    Article  PubMed  CAS  Google Scholar 

  • Stunden, C.E., Filosa, J.A., Garcia, A.J., Dean, J.B. and Putnam, R.W. (2001). Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats. Respiration Physiology 127, 135–155

    Article  PubMed  CAS  Google Scholar 

  • Szewczak, J.M. (1997). Matching gas exchange in the bat from flight to torpor. American Zoologist 37, 92–100

    Google Scholar 

  • Szewczak, J.M. and Jackson, D.C. (1992a). Acid–base state and intermittent breathing in the torpid bat, Eptesicus fuscus. Respiration Physiology 88, 205–215

    Article  PubMed  CAS  Google Scholar 

  • Szewczak, J.M. and Jackson, D.C. (1992b). Ventilatory response to hypoxia and hypercapnia in the torpid bat, Eptesicus fuscus. Respiration Physiology 88, 217–232

    Article  PubMed  CAS  Google Scholar 

  • Tahti, H. (1975). Effects of changes in CO2 and O2 concentrations in the inspired gas on respiration in the hibernating hedgehog (Erinaceus europaeus L.). Annales Zoologici Fennici 12, 183–187

    CAS  Google Scholar 

  • Tahti, H. and Soivio, A. (1975). Blood gas concentrations, acid–base balance, and blood pressure in hedgehogs in the active state and in hibernation with periodic respiration. Annales Zoologici Fennici 12, 188–192

    CAS  Google Scholar 

  • Van Weering, H.K., Wladimiroff, J.W. and Roodenburg, P.J. (1979). Effect of changes in maternal blood gases on fetal breathing movements. Contributions to Gynecology and Obstetrics 6, 88–91

    PubMed  Google Scholar 

  • Vogel, S., Ellington, C.P. and Kilgore, D.L.J. (1973). Wind-induced ventilation of the burrows of the prairie-dog, Cynomys ludovicianus. Journal of Comparative Physiology B 85, 1–14

    Google Scholar 

  • von der Ohe, C.G., Garner, C.C., Darian-Smith, C. and Heller, H.C. (2007). Synaptic protein dynamics in hibernation. The Journal of Neuroscience 27, 84–92

    Article  PubMed  CAS  Google Scholar 

  • Walker, B.R., Adams, E.M. and Voelkel, N.F. (1985). Ventilatory responses of hamsters and rats to hypoxia and hypercapnia. Journal of Applied Physiology 59, 1955–1960

    PubMed  CAS  Google Scholar 

  • Wang, W. and Richerson, G.B. (1999). Development of chemosensitivity of rat medullary raphe neurons. Neuroscience 90, 1001–1011

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Pizzonia, J.J. and Richerson, G.B. (1998). Chemosensitivity of rat medullary raphe neurones in primary tissue culture. Journal of Physiology 511, 433–450

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., Tiwari, J., Bradley, S.R., Zaykin, A.V. and Richerson, G.B. (2001). Acidosis-stimulated neurons of the medullary raphe are serotonergic. Journal of Neurophysiology 85, 2224–2235

    PubMed  CAS  Google Scholar 

  • Wickström, R., Hokfelt, T. and Lagercrantz, H. (2002). Development of CO2-response in the early newborn period in rat. Respiratory Physiology and Neurobiology 132, 145–158

    Article  PubMed  Google Scholar 

  • Wiemann, M. and Bingmann, D. (2001). Ventrolateral neurons of medullary organotypic cultures: intracellular pH regulation and bioelectric activity. Respiration Physiology 129, 57–70

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R.J.A., Harris, M.B., Remmers, J.E. and Perry, S.F. (2000). Evolution of air-breathing and central CO2/H+ respiratory chemosensitivity: new insights from an old fish? The Journal of Experimental Biology 203, 3505–3512

    PubMed  CAS  Google Scholar 

  • Withers, P.C. (1977). Metabolic, respiratory and haematological adjustments of the little pocket mouse to circadian torpor cycles. Respiration Physiology 31, 295–307

    Article  PubMed  CAS  Google Scholar 

  • Wong-Riley, M.T.T. and Liu, Q. (2005). Neurochemical development of brain stem nuclei involved in the control of respiration. Respiratory Physiology and Neurobiology 149, 83–98

    Article  PubMed  CAS  Google Scholar 

  • Xu, F., Zhang, Z. and Frazier, D.T. (2001). Microinjection of acetazolamide into the fastigial nucleus augments respiratory output in the rat. Journal of Applied Physiology 91, 2342–2350

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding from the NIH grants #R01 HL56683 and #F32 HL80877.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Hartzler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hartzler, L.K., Putnam, R.W. (2009). Central Chemosensitivity in Mammals. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_19

Download citation

Publish with us

Policies and ethics