Skip to main content
Log in

Locus coeruleus noradrenergic neurons and CO2 drive to breathing

  • Respiration
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The Locus coeruleus (LC) has been suggested as a CO2 chemoreceptor site in mammals. In the present study, we assessed the role of LC noradrenergic neurons in the cardiorespiratory and thermal responses to hypercapnia. To selectively destroy LC noradrenergic neurons, we administered 6-hydroxydopamine (6-OHDA) bilaterally into the LC of male Wistar rats. Control animals had vehicle (ascorbic acid) injected (sham group) into the LC. Pulmonary ventilation (plethysmograph), mean arterial pressure (MAP), heart rate (HR), and body core temperature (T c, data loggers) were measured followed by 60 min of hypercapnic exposure (7% CO2 in air). To verify the correct placement and effectiveness of the chemical lesions, tyrosine hydroxylase immunoreactivity was performed. Hypercapnia caused an increase in pulmonary ventilation in all groups, which resulted from increases in respiratory frequency and tidal volume (V T) in sham-operated and 6-OHDA-lesioned groups. The hypercapnic ventilatory response was significantly decreased in 6-OHDA-lesioned rats compared with sham group. This difference was due to a decreased V T in 6-OHDA rats. LC chemical lesion or hypercapnia did not affect MAP, HR, and T c. Thus, we conclude that LC noradrenergic neurons modulate hypercapnic ventilatory response but play no role in cardiovascular and thermal regulation under resting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andrzejewski M, Mückenhoff K, Scheid P, Ballantyne D (2001) Synchronized rhythms in chemosensitive neurons of the locus coeruleus in the absence of chemical synaptic transmission. Respir Physiol 129(1–2):123–140

    Article  PubMed  CAS  Google Scholar 

  2. Almeida MC, Steiner AA, Coimbra NC, Branco LGS (2004) Thermoeffector neuronal pathways in fever: role of the locus coeruleus. J Physiol 558:283–294

    Article  PubMed  CAS  Google Scholar 

  3. Anselmo-Franci JA, Peres-Polon VL, da Rocha-Barros VM, Moreira ER, Franci CR, Rocha MJ (1998) C-fos expression and electrolytic lesions studies reveal activation of the posterior region of locus coeruleus during hemorrhage induced hypotension. Brain Res 799(2):278–284

    Article  PubMed  CAS  Google Scholar 

  4. Astier B, Van Bockstaele EJ, Aston-Jones G, Pieribone VA (1990) Anatomical evidence for multiple pathways leading from the rostral ventrolateral medulla (nucleus paragigantocellularis) to the locus coeruleus in rat. Neurosci Lett 118(2):141–146

    Article  PubMed  CAS  Google Scholar 

  5. Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234(4777):734–737

    Article  PubMed  CAS  Google Scholar 

  6. Aston-Jones G, Shipley MT, Chouvet G, Ennis M, van Bockstaele E, Pieribone V, Shiekhattar R, Akaoka H, Drolet G, Astier B et al (1991) Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog Brain Res 88:47–75

    Article  PubMed  CAS  Google Scholar 

  7. Aston-Jones G, Astier B, Ennis M (1992) Inhibition of noradrenergic locus coeruleus neurons by C1 adrenergic cells in the rostral ventral medulla. Neuroscience 48(2):371–381

    Article  PubMed  CAS  Google Scholar 

  8. Aston-Jones G, Shipley MT, Grzanna R (1995) The locus coeruleus, A5 and A7 noradrenergic cell groups. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, CA, pp 183–213

    Google Scholar 

  9. Ballantyne D, Scheid P (2001) Central chemosensitivity of respiration: brief overview. Respir Physiol 129:5–12

    Article  PubMed  CAS  Google Scholar 

  10. Barros RC, Branco LG (1998) Effect of nitric oxide synthase inhibition on hypercapnia-induced hypothermia and hyperventilation. J Appl Physiol 85(3):967–972

    PubMed  CAS  Google Scholar 

  11. Bartlett D, Tenney SM (1970) Control of breathing in experimental anemia. Respir Physiol 10:384–395

    Article  PubMed  Google Scholar 

  12. Bernard DG, Li A, Nattie EE (1996) Evidence for central chemoreception in the midline raphe. J Appl Physiol 80:108–115

    PubMed  CAS  Google Scholar 

  13. Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42(1):33–84

    Article  PubMed  Google Scholar 

  14. Card JP, Sved JC, Craig B, Raizada M, Vazquez J, Sved AF (2006) Efferent projections of rat rostroventrolateral medulla C1 catecholamine neurons: implications for the central control of cardiovascular regulation. J Comp Neurol 499(5):840–859

    Article  PubMed  Google Scholar 

  15. Coates EL, Li A, Nattie EE (1993) Widespread sites of brain stem ventilatory chemoreceptors. J Appl Physiol 75:5–14

    PubMed  CAS  Google Scholar 

  16. Dawid-Milner M, Lara J, Gonzales-Baron S, Spyer K (2001) Respiratory effects of stimulation of cell bodies of the A5 region in anesthetized rats. Pflugers Arch 441:434–443

    Article  PubMed  CAS  Google Scholar 

  17. Dean JB, Kinkade EA, Putnam RW (2001) Cell–cell coupling in CO(2)/H(+)-excited neurons in brainstem slices. Respir Physiol 129(1–2):83–100

    Article  PubMed  CAS  Google Scholar 

  18. Dejours P (1981) Principle of comparative respiratory physiology, 2nd edn. Elsevier, New York

    Google Scholar 

  19. Elam M, Yao T, Thoren P, Svensson TH (1981) Hypercapnia and hypoxia: chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves. Brain Res 222:373–381

    Article  PubMed  CAS  Google Scholar 

  20. Erickson JT, Millhorn DE (1984) Hypoxia and electrical stimulation of the carotid sinus nerve induce Fos-like immunoreactivity within catecholaminergic and serotonergic neurons of the rat brainstem. J Comp Neurol 348:161–182

    Article  Google Scholar 

  21. Fabris G, Anselmo-Franci JA, Branco LG (1999) Role of nitric oxide in hypoxia-induced hyperventilation and hypothermia: participation of the locus coeruleus. Braz J Med Biol Res 32(11):1389–1398

    Article  PubMed  CAS  Google Scholar 

  22. Feldman JL, Mitchell GS, Nattie EE (2003) Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci 26:239–266

    Article  PubMed  CAS  Google Scholar 

  23. Filosa JA, Dean JB, Putnam RW (2002) Role of intracellular and extracellular pH in the chemosensitive response of rat locus coeruleus neurones. J Physiol 541:493–509

    Article  PubMed  CAS  Google Scholar 

  24. Filosa JA, Putnam RW (2003) Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels. Am J Physiol Cell Physiol 284(1):C145–155

    PubMed  CAS  Google Scholar 

  25. Fukuda Y, Sato A, Trzebski A (1987) Carotid chemoreceptor discharge responses to hypoxia and hypercapnia in normotensive and spontaneously hypertensive rats. J Auton Nerv Syst 1:1–11

    Article  Google Scholar 

  26. Gann DS, Ward DG, Baertschi AJ, Carlson DE, Maran JW (1977) Neural control of ACTH release in response to hemorrhage. Ann N Y Acad Sci 297:477–497

    Article  PubMed  CAS  Google Scholar 

  27. González MM, Aston-Jones G (2006) Circadian regulation of arousal: role of the noradrenergic locus coeruleus system and light exposure. Sleep 29(10):1327–1336

    PubMed  Google Scholar 

  28. Greenberg HE, Sica A, Batson D, Scharf SM (1999) Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol 86(1):298–305

    PubMed  CAS  Google Scholar 

  29. Guyenet PG, Stornetta RL, Bayliss DA, Mulkey DK (2005) Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors. Exp Physiol 90:247–253

    Article  PubMed  CAS  Google Scholar 

  30. Haxhiu MA, Yung K, Erokwu B, Cherniack NS (1996) CO2-induced c-fos expression in the CNS catecholaminergic neurons. Respir Physiol 105:35–45

    Article  PubMed  CAS  Google Scholar 

  31. Hernandez JP, Xu F, Frazier DT (2004) Medial vestibular nucleus mediates the cardiorespiratory responses to fastigial nuclear activation and hypercapnia. J Appl Physiol 97(3):835–842

    Article  PubMed  Google Scholar 

  32. Hilaire G, Viemari JC, Coulon P, Simonneau M, Bévengut M (2004) Modulation of the respiratory rhythm generation by the pontine A5 and A6 groups in rodents. Respir Physiol Neurobiol 143:187–197

    Article  PubMed  CAS  Google Scholar 

  33. Lai YL, Lamm JE, Hildebrandt J (1981) Ventilation during prolonged hypercapnia in the rat. J Appl Physiol 51(1):78–83

    PubMed  CAS  Google Scholar 

  34. Li A, Nattie EE (2006) Catecholamine neurons in rats modulate sleep, breathing, central chemoreception, and breathing variability. J Physiol 570:385–396

    PubMed  CAS  Google Scholar 

  35. Loeschcke HH, Koepchen HP, Gertz KH (1958) Effect of hydrogen ion concentration and carbon dioxide pressure in the cerebrospinal fluid on respiration. Pflugers Arch 266(6):569–585

    Article  PubMed  CAS  Google Scholar 

  36. Makeham John M, Goodchild AK, Costin NS, Pilowsky Paul M (2004) Hypercapnia selectively attenuates the somato-sympathetic reflex. Respir Physiol Neurobiol 140:133–143

    Article  PubMed  CAS  Google Scholar 

  37. Malan A (1973) Ventilation measured by body plethysmography in hibernating mammals and in poikilotherms. Respir Physiol 17(1):32–44

    Article  PubMed  CAS  Google Scholar 

  38. McBride RL, Sutin J (1976) Projections of the locus coeruleus and adjacent pontine tegmentum in the cat. J Comp Neurol 165(3):265–284

    Article  PubMed  CAS  Google Scholar 

  39. Miyawaki T, Kawamura H, Komatsu K, Yasugi T (1991) Chemical stimulation of the locus coeruleus: inhibitory effects on hemodynamics and renal sympathetic nerve activity. Brain Res 568(1–2):101–108

    Article  PubMed  CAS  Google Scholar 

  40. Miyawaki T, Kawamura H, Hara K, Suzuki K, Usui W, Yasugi T (1993) Differential regional hemodynamic changes produced by L-glutamate stimulation of the locus coeruleus. Brain Res 600(1):56–62

    Article  PubMed  CAS  Google Scholar 

  41. Murase S, Takayama M, Nosaka S (1993) Chemical stimulation of the nucleus locus coeruleus: cardiovascular responses and baroreflex modification. Neurosci Lett 153:1–4

    Article  PubMed  CAS  Google Scholar 

  42. Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7(12):1360–1369

    Article  PubMed  CAS  Google Scholar 

  43. Nattie E, Li A (2000) Muscimol dialysis in the retrotrapezoid nucleus region inhibits breathing in the awake rat. J Appl Physiol 89(1):153–162

    PubMed  CAS  Google Scholar 

  44. Nattie EE (2001) Central chemosensitivity, sleep, and wakefulness. Respir Physiol 129:257–268

    Article  PubMed  CAS  Google Scholar 

  45. Nattie E, Li A (2006) Neurokinin-1 receptor-expressing neurons in the ventral medulla are essential for normal central and peripheral chemoreception in the conscious rat. J Appl Physiol 101(6):1596–1606

    Article  PubMed  CAS  Google Scholar 

  46. Oikawa S, Hirakawa H, Kusakabe T, Nakashima Y, Hayashida Y (2005) Autonomic cardiovascular responses to hypercapnia in conscious rats: the roles of the chemo- and baroreceptors. Auton Neurosci 117(2):105–114

    Article  PubMed  Google Scholar 

  47. Oyamada Y, Ballantyne D, Muckenhoff K, Scheid P (1998) Respiration-modulated membrane potential and chemosensitivity of locus coeruleus neurones in the in vitro brainstem-spinal cord of the neonatal rat. J Physiol 513:381–398

    Article  PubMed  CAS  Google Scholar 

  48. Oyamada Y, Andrzejewski M, Muckenhoff K, Scheid P, Ballantyne D (1999) Locus coeruleus neurones in vitro: pH-sensitive oscillations of membrane potential in an electrically coupled network.. Respir Physiol 118(2–3):131–147

    Article  PubMed  CAS  Google Scholar 

  49. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  50. Pineda J, Aghajanian GK (1997) Carbon dioxide regulates the tonic activity of locus ceruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current. Neuroscience 77:723–743

    Article  PubMed  CAS  Google Scholar 

  51. Putnam RW, Filosa JA, Ritucci NA (2004) Cellular mechanisms involved in CO(2) and acid signaling in chemosensitive neurons. Am J Physiol Cell Physiol 287(6):C1493–526

    Article  PubMed  CAS  Google Scholar 

  52. Pieribone VA, Aston-Jones G (1991) Adrenergic innervation of the rat nucleus locus coeruleus arises predominantly from the C1 adrenergic cell group in the rostral medulla. Neuroscience 41(2–3):525–542

    Article  PubMed  CAS  Google Scholar 

  53. Ravanelli MI, Almeida MC, Branco LG (2007) Role of the locus coeruleus carbon monoxide pathway in endotoxin fever in rats. Pflugers Arch 453(4):471–476

    Article  PubMed  CAS  Google Scholar 

  54. Richerson, GB (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5(6):449–461

    Article  PubMed  CAS  Google Scholar 

  55. Rothe CF, Maass-Moreno R, Flanagan AD (1990) Effects of hypercapnia and hypoxia on the cardiovascular system: vascular capacitance and aortic chemoreceptors. Am J Physiol 259(3):H932–H939

    PubMed  CAS  Google Scholar 

  56. Saiki C, Mortola JP (1996) Effect of CO2 on the metabolic and ventilatory responses to ambient temperature in conscious adult and newborn rats. J Physiol 491:261–269

    PubMed  CAS  Google Scholar 

  57. Sakai K, Yoshimoto Y, Luppi PH, Fort P, el Mansari M, Salvert D, Jouvet M (1990) Lower brainstem afferents to the cat posterior hypothalamus: a double-labeling study. Brain Res Bull 24(3):437–455

    Article  PubMed  CAS  Google Scholar 

  58. Solomon IC, Edelman NH, Neubauer JA (2000) Pre-Botzinger complex functions as a central hypoxia chemosensor for respiration in vivo. J Neurophysiol 83:2854–2868

    PubMed  CAS  Google Scholar 

  59. Stunden CE, Filosa JA, Garcia AJ, Dean JB, Putnam RW (2001) Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats. Respir Physiol 127(2–3):135–155

    Article  PubMed  CAS  Google Scholar 

  60. Stupfel M (1974) Carbon dioxide and temperature regulation of homeothermic mammals. In: Nahas G, Schaefer KE (eds) Carbon dioxide and metabolic regulations. Springer, New York, pp 163–186

    Google Scholar 

  61. Sved AF, Felsten G (1987) Stimulation of the locus coeruleus decreases arterial pressure. Brain Res 414(1):19–32

    Article  Google Scholar 

  62. Taylor NC, Li A, Nattie EE (2005) Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats. J Physiol 566(Pt 2):543–557

    Article  PubMed  CAS  Google Scholar 

  63. Teppema LJ, Veening JG, Kranenburg A, Dahan A, Berkenbosch A, Olievier C (1997) Expression of c-fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia. J Comp Neurol 388:169–190

    Article  PubMed  CAS  Google Scholar 

  64. Viemari JC, Bévengut M, Burnet H, Coulon P, Pequignot JM, Tiveron MC, Hilaire G (2004) Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice. J Neurosci 24:928–937

    Article  PubMed  CAS  Google Scholar 

  65. Ward DG, Darlington DN (1987) A blood pressure lowering effect of lesions of the caudal periaqueductal gray: relationship to basal pressure. Brain Res 423(1–2):373–377

    Article  PubMed  CAS  Google Scholar 

  66. Walker BR (1987) Cardiovascular effect of V1 vasopressinergic blockade during acute hypercapnia in conscious rats. Am J Physiol 252(1):R127–133

    PubMed  CAS  Google Scholar 

  67. Wright CL, Boulant JA (2007) Carbon dioxide and pH effects on temperature-sensitive and -insensitive hypothalamic neurons. J Appl Physiol 102(4):1357–1366

    Article  PubMed  Google Scholar 

  68. Xu S, Guo S, Jiang X, Yin Q, Umezawa T, Hisamitsu T (2003) Effect of indomethacin on the c-fos expression in AVP and TH neurons in rat brain induced by lipopolysaccharide. Brain Res 966:13–18

    Article  PubMed  CAS  Google Scholar 

  69. Yao ST, Finkelstein DI, Lawrence AJ (1999) Nitrergic stimulation of the locus coeruleus modulates blood pressure and heart rate in the anaesthetized rat. Neuroscience 91(2):621–629

    Article  PubMed  CAS  Google Scholar 

  70. Yao ST, Lawrence AJ (2005) Purinergic modulation of cardiovascular function in the rat locus coeruleus. Br. J. Pharmacol 145(3):342–352

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We thank Gustavo Michel, Camila Linhares Taxini, and Euclides Roberto Secato for excellent technical assistance and Dr. Mogens Glass for critically reading this manuscript. Vivian Biancardi was the recipient of a FAPESP graduate scholarship (05/56129-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane H. Gargaglioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biancardi, V., Bícego, K.C., Almeida, M.C. et al. Locus coeruleus noradrenergic neurons and CO2 drive to breathing. Pflugers Arch - Eur J Physiol 455, 1119–1128 (2008). https://doi.org/10.1007/s00424-007-0338-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0338-8

Keywords

Navigation