Skip to main content

Zellen

  • Chapter
Medizintechnik

Zusammenfassung

Die Zelle stellt einen universellen Baustein aller Organismen dar. Sie ist die kleinste selbständig lebensfähige Einheit und wird als Grundform der biologischen Organisation bezüglich der Struktur, der Funktion und der Vermehrung verstanden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Roskelley C.D., Srebrow A., Bissell M.J., A hierarchy of ECM-mediated signalling regulates tissue-specific gene expression, Curr. Opin. Cell Biol., 7, 1995, p. 736–747.

    Article  Google Scholar 

  2. He Y.J., Grinnel F., Stress relaxation of fibroblasts activates a cyclic AMP signalling pathway, J. Cell Biol., 126, 1994, p. 457–464.

    Article  Google Scholar 

  3. Dickenson R.B., Guido S., Tranquillo R.T., Biased cell migration of fribroblasts exhibiting contact guidance in oriented collagen gels, Ann. Biomed. Eng., 22, 1994, p. 342–356.

    Article  Google Scholar 

  4. Takeichi M., The cadherins: cell-cell adhesion molecules controlling animal morphogenisis, Development, 102, 1988, p. 639–665.

    Google Scholar 

  5. Takeichi M., Cadherins: a molecular family important in selective cell-cell adhesion, Annu. Rev. Biochem., 59, 1990, p. 237–252.

    Article  Google Scholar 

  6. Takeichi M., Cadherin cell adhesion receptors as a morphogenitic regulator, Science, 251, 1991, p. 1451–1455.

    Article  Google Scholar 

  7. Bevilacqua M., Butcher E., Furie B., Gallatin M., Gimbrone M., Harlan J., Kishimoto K., Lasky L., McEver R., Paulson J., Rosen S., Seed B., Siegelman M., Springer T., Stoolman L., Tedder T., Varki A., Wagner D., Weissman I.,Zimmerman G., Selectins: a family of adhesion receptors, Cell, 67, 1991, p. 233–233.

    Article  Google Scholar 

  8. Lasky L.A., Selectins: interpreters of cell-specific carbohydrate information during inflammation, Science, 258, 1992, p. 964–969.

    Article  Google Scholar 

  9. Varki A., Selectin ligands, Proc. Natl. Acad. Sci. USA, 91, 1994, p. 7390–7397.

    Article  Google Scholar 

  10. Grumet M., Cell adhseion milecules and their subgroups in the nervous system, Curr. Oin. Neurobiol., 21, 1991, p. 298–306.

    Google Scholar 

  11. Hunkapiller T., Hood L., Diverstiy of the immunoglobulin gene superfamily, Adv. Imunol., 44, 1989, p. 1–63.

    Article  Google Scholar 

  12. Hynes R.O., Integrins: versatility, modulation and signaling in cell adhesion, Cell, 69, 1992, p. 11–25.

    Article  Google Scholar 

  13. Ruoslahti E., Integrins, J. Clin. Invest., 87, 1991, p. 1–5.

    Article  Google Scholar 

  14. Izzard C.S., Lochner L.R., Cell-to-substratum contacts in living fibroblasts: and interference reflection study with an evaluation of the technique, J. Cell Sci., 21, 1976, p. 129–159.

    Google Scholar 

  15. Fath K.R., Edgell D.S., Burridge K., The distribution of distinct integrins in focal contacts is determined by the substratum composition, J. Cell Sci., 92, 1989, p. 67–75.

    Google Scholar 

  16. Ward M.D., Hammer D.A., A theoretical analysis for the effect of fogal contact formation on cell-substrate attac hment strength, Biophys. J., 64, 1993, p. 936–959.

    Article  Google Scholar 

  17. Schwarzbauer J.E., Fibronectin: from gene to protein, Curr. Opin. Cell Biol., 3, 1991, p. 786–791.

    Article  Google Scholar 

  18. Preissner K.T., Structure and biological role of vitronectin, Annu. Rev. Cell Biol., 7, 1991, p. 275–310.

    Article  Google Scholar 

  19. Ruggeri Z.M., Ware J., The structure and function on von Willebrand factor, Thromb. Hemostas., 67, 1992, p. 594–599.

    Google Scholar 

  20. Kleinman H.K., Weeks B.S., Schnaper H.W., Kibbey M.C., Yamaury K., Grant D.S., The laminins: a family of basement membrane glycoproteins important in cell differentiation and tumor metaseses, Vitamins Hormones, 47, 1993, p. 161–186.

    Article  Google Scholar 

  21. Yamada K.M., Adhesive recognition sequences, J. Biol. Chem., 266, 1991, p. 12809–12812.

    Google Scholar 

  22. Humphries M.J., The molecular basis and specificity of integrin-ligand interactions, J. Cell Sci., 97, 1990, p. 585–592.

    Google Scholar 

  23. Ruoslahti M.D., Perischbacher M.D., New perspectives in cell adhesion: RGD and integrins, Science, 238, 1987, p. 491–497.

    Article  Google Scholar 

  24. Graf J., Iwamoto Y., Sasaki M., Martin G.R., Kleinman R.K., Robey F.A., Yamada Y., Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding, Cell, 48, 1987, p. 989–996.

    Article  Google Scholar 

  25. Graf J., Ogle R.C., Robey F.A., Sasaki M., Martin G.R., Yamada Y., Kleinman H.K., A pentapeptide from the laminin B1 chain that mediates cell adhesion and binds the 67000 laminn receptor, Biochemistry, 26, 1987, p. 6896–6900.

    Article  Google Scholar 

  26. Meecham R.P., Laminin Receptors, Annu. Rev. Biol., 7, 1991, p. 71–91.

    Article  Google Scholar 

  27. Massia S.P., Rao S.S., Hubbell J.A., Covalently immobilized laminin peptide tyr-ile-gly-ser-arg (YIGSR) suppports cell spreading and co-location of the 67-kilodalton laminin receptor with a-actinin and vinculin, J. Biol. Chem., 268, 1993, p. 8053–8059.

    Google Scholar 

  28. Tashiro K., Sephel G.C., Greatorex D., Sasaki M., Shirashi N., Martin G.R., Kleinman H.K., Yamada Y., The RGD containing site of the mouse laminin A chain is active for cell attachment, spreading, migration and neurite outgrowth, J. Cell. Physiol., 146, 1991, p. 451–459.

    Article  Google Scholar 

  29. Yamada Y., Kleinman H.K., Functional domains of cell adhesion molecules, Curr. Opin. Cell Biol., 4, 1992, p. 819–823.

    Article  Google Scholar 

  30. Wight T.N., Kinsella M.G., Qwarnström E.E., The role of proteoglycans in cell adhesion, migration and proliferation, Curr. Opin. Cell Biol., 4, 1992, p. 793–801.

    Article  Google Scholar 

  31. Jackson R.L., Busch S.J., Cardin A.D., Glycosaminoglycans: molecular properties, protein interactions and role in physiological processes, Physiol. Rev., 71, 1991, p. 481–539.

    Google Scholar 

  32. LeBaron R.G., Esko J.D., Woods A., Johansson S., Höök M., Adhesion of glycosaminoglycan-deficient Chinese hamster ovary cell mutants to fibronectin substrata, J. Cell Biol., 106, 1988, p. 945–952.

    Article  Google Scholar 

  33. Massia S.P., Hubbell J.A., Immobilized amines and basic amino acids as mimetic heparin binding domains for cell surface proteoglycan-mediated adhesion, J. Biol. Chem., 267, 1992, p. 10133–10141.

    Google Scholar 

  34. Dejana E., Colella S., Conforti G., Abbadini M., Gaboii M., Marchisio P.C., Fibronectin and vitronectin regulate the organization of their respective arg-gly-asp receptors in cultured human endothelial cells, J. Cell Biol., 107, 1988, p. 1215–1223.

    Article  Google Scholar 

  35. Mosher D.F., Sottile J., Wu C., McDonald J.A., Assembly of extracellular matix, Curr. Opin. Cell Biol., 4, 1992, p. 810–818.

    Article  Google Scholar 

  36. Mayadas T.N., Wagner D.D., Vicinal cysteines in the prosequence play a role in von Willebrand factor multimer assembly, Proc. Natl. Acad. Sci. USA, 89, 1992, p. 3531–3535.

    Article  Google Scholar 

  37. Chen W.T., Membrane proteases: roles in trissue remodeling and tumor invasion, Curr. Opin. Cell Biol., 4, 1992, p. 802–809.

    Article  Google Scholar 

  38. Birkedall-Hansen H., Proteolytic remodeling of extracellular matix, Curr. Opin. Cell Biol., 7, 1995, p. 728–735.

    Article  Google Scholar 

  39. Blasi F., Urokinase and urokinase receptor: a paracrine/autocrine system regulating cell migration and invasiveness, BioEssays, 15, 1993, p. 105–111.

    Article  Google Scholar 

  40. Norde W., Lyklema J., Why proteins prefer interfaces, J. Biomater. Sci. Polym. Edn., 2, 1991, p. 183–202.

    Google Scholar 

  41. Andrade J.D., Hlady V., Protein adsorption and materials biocompatibility: a tutorial review and suggested hypotheses, Adv. Polym. Sci., 79, 1986, p. 1–63.

    Google Scholar 

  42. Wojciechowski P., Brash J.L., The Vroman effect in tube geometry: the influence of flow on protein adsorption measurements, J. Biomater. Sci. Polym. Edn., 2, 1991, p. 203–216.

    Google Scholar 

  43. Danilov Y.N., Juliano R.L., (Asp-gly-asp)n-albumin conjugates as model substratum for integrin-mediated cell adhesion, Exp. Cell Res., 182, 1989, p. 186–196.

    Article  Google Scholar 

  44. Massia S.P., Hubbell J.A., Covalent surface immobilization of arf-fly-asp- and tyr-ile-gly-ser-arg-containing peptides to obtain well-defined cell-adhesive substrates, Anal. Biochem., 187, 1990, p. 292–301.

    Article  Google Scholar 

  45. Massia S.P., Hubbell J.A., An RGD spacing of 440 nm is sufficient for integrin avb3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation, J. Cell Biol., 114, 1991, p. 1089–1100.

    Article  Google Scholar 

  46. Harris J.M., Poly(Ethylene Glycol) Chemistry, Plenum Press, New York, 1992.

    Google Scholar 

  47. Llanos G.R., Sefton M.V., Does polyethylene oxide possess a low thrombogenecity?, J. Biomater. Sci. Polymer Edn., 4, 1993, p. 381–400.

    Google Scholar 

  48. Amiji M., Park K., Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and hepatin for reduced thrombogenicity, J. Biomater. Sci. Polymer Edn., 4, 1993, p. 217–234.

    Article  Google Scholar 

  49. Lopez G.P., Albers M.W., Schreiber S.L., Carroll R., Peralta E., Whitesides G.M., Convenient methods for pattering the adhesion of cells to surfaces using self-assembled monolayers of alkanethiolates on gold, J. Am. Chem. Soc., 115, 1993, p. 5877–5878.

    Article  Google Scholar 

  50. Bain C.D., Whitesides G.M., Modeling organic surfaces with self-assembled monolayers, Angew. Chem. Int. Edn. Engl, 28, 1989, p. 506–512.

    Article  Google Scholar 

  51. Prime K.L., Whitesides G.M., Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assemled monolayers, J. Am. Chem. Soc., 115, 1993, p. 10714–10721.

    Article  Google Scholar 

  52. Drumheller P.D., Hubbell J.A., Phase mixed poly(ethylene glycol)/ poly(trimethylolpropane triacrylate) semi-interpenetrating polymer networks obtained by rapid network formation, J. Polym. Sci. A. Polym. Chem., 32, 1994, p. 2715–2725.

    Article  Google Scholar 

  53. Drumheller P.D., Hubbell J.A., Densely cross-linked polymer networks of poly(ethylene glycol) in trimethylolpropane triacrylate for cell adhesion resistant surfaces, J. Biomed. Mater. Res., 29, 1994, p. 207–215.

    Article  Google Scholar 

  54. Drumheller P.D., Hubbell J.A., Polymer networks with grafted cell adhesive peptides for highly biospecific cell adhesive substrates, Anal. Biochem., 222, 1994, p. 380–388.

    Article  Google Scholar 

  55. Healy K.E., Lom B., Hockberger P.E., Spatial distribution of mammalian cells dictated by material surface chemistry, Biotechnol. Bioeng., 43, 1994, p. 792–800.

    Article  Google Scholar 

  56. Kleinfeld D., Kahler K.H., Hockberger P.E., Controlled outgrowth of dissociated neurons on patterned substrates, J. Neurosci., 8, 1988, p. 4098–4120.

    Google Scholar 

  57. Ranieri J.P., Bellamkonda R., Bekos E.J., Gardella J.A., Mathieu H.J., Ruiz L., Aebischer P., Spatial control of neuronal cell attachment and differentiation on covalently patterned laminin oligopeptide substrates, Int. J. Develop. Neurosci., 12, 1994, p. 725–735.

    Article  Google Scholar 

  58. Stenger D.A., Gerger J.H., Dulcey C.S., Hickman J.J., Rudolph A.S., Nielsen T.B., McCort S.M., Calvert J.M., Coplanar molecular assemblies of aminoalkylsilane and perfluorinated alkylsilane: characterization and geometric definition of mammalian cell adhesion and growth, J. Am. Chem. Soc., 114, 1992, p. 8435–8442.

    Article  Google Scholar 

  59. Moghaddam M.J., Matsuda T., Molecular design of 3-dimensional artificial extracellular matrix: photosensitive polymers containing cell adhesive peptide, J. Polym. Sci. Polym. Chem., 31, 1993, p. 1589–1597.

    Article  Google Scholar 

  60. Kumar A., Abbott N.L., Kim E., Biebuyck H.A., Whitesides G.M., Patterned self assembled monolayers and mesoscale phenomena, Acc. Chem. Res., 28, 1995, p. 219–226.

    Article  Google Scholar 

  61. Singhvi R., Kumar A., Lopez G.P., Stephanopoulos G.N., Wang D.I.C., Whitesides G.M., Ingber D.W., Engineering cell shape and function, Science, 264, 1994, p. 696–698.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shah-Derler, B., Hubbell, J., Wintermantel, E., Ha, SW. (2009). Zellen. In: Wintermantel, E., Ha, SW. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93936-8_6

Download citation

Publish with us

Policies and ethics