Skip to main content

The Diversity of Soluble Di-iron Monooxygenases with Bioremediation Applications

  • Chapter
  • First Online:
Advances in Applied Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 17))

Abstract

Pollution with organic compounds (especially xenobiotics) is a significant ­problem of industrial societies. Treatment of waste streams to remove potential pollutants or remediation of contaminated sites can be achieved by exploiting the degradative capacity of bacteria. Among the most important of the enzymes used by bacteria in degradation of organic compounds are oxygenases. These enzymes catalyse the addition of oxygen atoms into organic compounds to produce alcohols, epoxides, etc. whose greater reactivity makes them substrates for a wider range of enzymes (Urlacher and Schmid 2006). The substrate range accommodated by the known oxygenases is enormous and for many organic pollutants, degradation pathways are initiated by oxygenases. This makes these enzymes applicable as fundamentally important enzymes to many bioremediation projects. They encompass a number of different protein families, utilizing distinct chemistries (Park 2007; Urlacher and Eiben 2006; van Beilen and Funhoff 2005; van Berkel et al. 2006; Wackett 2002).

This chapter focuses on one family of monoxygenases that have been termed the soluble di-iron monooxygenases (SDIMO), also termed bacterial multicomponent monooxygenases (BMM), that have wide applications in bioremediation (Leahy et al. 2003; Notomista et al. 2003). Recent advances in understanding of diversity in the SDIMOs are creating new opportunities for their effective use in bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez-Cohen L, McCarty PL (1991a) A cometabolic biotransformation model for halogenated aliphatic-compounds exhibiting product toxicity. Environ Sci Technol 25:1381–1387

    Article  CAS  Google Scholar 

  • Alvarez-Cohen L, McCarty PL (1991b) Product toxicity and cometabolic competitive-inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl Environ Microbiol 57:1031–1037

    CAS  Google Scholar 

  • Baldwin BR, Nakatsu CH, Nies L (2003) Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl Environ Microbiol 69:3350–3358

    Article  CAS  Google Scholar 

  • Baldwin BR, Nakatsu CH, Nies L (2008) Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. Water Res 42:723–731

    Article  CAS  Google Scholar 

  • Basile LA, Erijman L (2008) Quantitative assessment of phenol hydroxylase diversity in bioreactors using a functional gene analysis. Appl Microbiol Biotechnol 78:863–872

    Article  CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Murrell JC, Radajewski S, Weilharter A, Sessitsch A (2003) Development and validation of a diagnostic microbial microarray for methanotrophs. Environ Microbiol 5:566–582

    Article  CAS  Google Scholar 

  • Bodrossy L, Stralis-Pavese N, Konrad-Koszler M, Weilharter A, Reichenauer TG, Schofer D, Sessitsch A (2006) mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl Environ Microbiol 72:1672–1676

    Article  CAS  Google Scholar 

  • Champreda V, Zhou NY, Leak DJ (2004) Heterologous expression of alkene monooxygenase components from Xanthobacter autotrophicus Py2 and reconstitution of the active complex. FEMS Microbiol Lett 239:309–318.

    Article  CAS  Google Scholar 

  • Colby J, Stirling DI, Dalton H (1977) Soluble methane Monooxygenase of Methylococcus capsulatus (Bath) — ability to oxygenate normal-alkanes, normal-alkenes, ethers, and alicyclic, aromatic and heterocyclic-compounds. Biochem J 165:395–402

    CAS  Google Scholar 

  • Coleman NV, Mattes TE, Gossett JM, Spain JC (2002) Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites. Appl Environ Microbiol 68:6162–6171

    Article  CAS  Google Scholar 

  • Coleman NV, Spain JC (2003a) Distribution of the coenzyme m pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl Environ Microbiol 69:6041–6046

    Article  CAS  Google Scholar 

  • Coleman NV, Spain JC (2003b) Epoxyalkane: Coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J Bacteriol 185:5536–5545

    Article  CAS  Google Scholar 

  • Coleman NV, Bui NB, Holmes AJ (2006) Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 8:1228–1239

    Article  CAS  Google Scholar 

  • Connon SA, Tovanabootr A, Dolan M, Vergin K, Giovannoni SJ, Semprini L (2005) Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. Environ Microbiol 7:165-178

    Article  CAS  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665-4670

    Article  CAS  Google Scholar 

  • Dumont MG, Murrell JC (2005) Community-level analysis: key genes of aerobic methane oxidation. Environ Microbiol 7:413–427

    Google Scholar 

  • Futamata H, Harayama S, Watanabe K (2001) Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation. Appl Environ Microbiol 67:4671–4677

    Article  CAS  Google Scholar 

  • Futamata H, Harayama S, Hiraishi A, Watanabe K (2003) Functional and structural analyses of trichloroethylene-degrading bacterial communities under different phenol-feeding conditions: laboratory experiments. Appl Microbiol Biotechnol 60:594–600

    CAS  Google Scholar 

  • Futamata H, Nagano Y, Watanabe K, Hiraishi A (2005) Unique kinetic properties of phenol-degrading Variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 71:904–911

    Article  CAS  Google Scholar 

  • Gray ND, Head IM (2001) Linking genetic identity and function in communities of uncultured bacteria. Environ Microbiol 3:481–492

    Article  CAS  Google Scholar 

  • Haase K, Wendlandt KD, Graber A, Stottmeister U (2006) Cometabolic degradation of MTBE using methane-propane- and butane-utilizing enrichment cultures and Rhodococcus sp BU3. Eng Life Sci 6:508–513

    Article  CAS  Google Scholar 

  • Halsey KH, Sayavedra-Soto LA, Bottomley PJ, Arp DJ (2005) Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl Microbiol Biotechnol 68:794–801

    Article  CAS  Google Scholar 

  • Head IM (1998) Bioremediation: towards a credible technology. Microbiology 144:599–608

    Article  CAS  Google Scholar 

  • Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21

    Article  CAS  Google Scholar 

  • Holmes AJ, Coleman NV (2008) Evolutionary ecology and prospecting for monooxygenases as biocatalysts. Anton van Leeuwenh 94:75–84

    Google Scholar 

  • Hopkins GD, Semprini L, McCarty PL (1993) Microcosm and in-situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms. Appl Environ Microbiol 59:2277–2285

    CAS  Google Scholar 

  • Hopkins GD, Goltz MN, Allan JP, Dolan ME, McCarty PL (1997) Full-scale in-situ cometabolic biodegradation of trichloroethene-contaminated groundwater through toluene injection. In: Abstracts of papers of the American Chemical Society, pp 213, 54-ENVR

    Google Scholar 

  • Iwai S, Kurisu F, Urakawa H, Yagi O, Furumai H (2007) Development of a 60-mer oligonucleotide microarray on the basis of benzene monooxygenase gene diversity. Appl Microbiol Biotechnol 75:929–939

    Article  CAS  Google Scholar 

  • Leahy JG, Batchelor PJ, Morcomb SM (2003) Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev 27:449–479

    Article  CAS  Google Scholar 

  • Lee SW, Keeney DR, Lim DH, Dispirito AA, Semrau JD (2006) Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: Can the tortoise beat the hare? Appl Environ Microbiol 72:7503–7509

    Article  CAS  Google Scholar 

  • Mahendra S, Petzold CJ, Baidoo EE, Keasling JD, Alvarez-Cohen L (2007) Identification of the intermediates of in vivo oxidation of 1,4-dioxane by monooxygenase-containing bacteria. Environ Sci Technol 41:7330–7336

    Article  CAS  Google Scholar 

  • Mattes TE, Coleman NV, Spain JC, Gossett JM (2005) Physiological and molecular genetic analyses of vinyl chloride and ethene biodegradation in Nocardioides sp strain JS614. Arch Microbiol 183:95–106

    Article  CAS  Google Scholar 

  • McDonald IR, Kenna EM, Murrell JC (1995) Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61:116–121

    CAS  Google Scholar 

  • McDonald IR, Miguez CB, Rogge G, Bourque D, Wendlandt KD, Groleau D, Murrell JC (2006) Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments. FEMS Microbiol Lett 255:225–232

    Article  CAS  Google Scholar 

  • Notomista E, Lahm A, Di Donato A, Tramontano A (2003) Evolution of bacterial and archaeal multicomponent monooxygenases. J Mol Evol 56: 435–445.

    Article  CAS  Google Scholar 

  • Park JB (2007) Oxygenase-based whole-cell biocatalysis in organic synthesis. J Microbiol Biotechnol 17:379–392

    CAS  Google Scholar 

  • Sharp JO, Sales CM, LeBlanc JC, Liu J, Wood TK, Eltis LD, Mohn WW, Alvarez-Cohen L (2007) An inducible propane monooxygenase is responsible for N-nitrosodimethylamine degradation by Rhodococcus sp strain RHA1. Appl Environ Microbiol 73:6930–6938

    Article  CAS  Google Scholar 

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Molecul Microbiol 58:682–692

    Article  CAS  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24:324–330

    Article  CAS  Google Scholar 

  • Urlacher VB, Schmid RD (2006) Recent advances in oxygenase-catalyzed biotransformations. Curr Opin Chem Biol 10:156–161

    Article  CAS  Google Scholar 

  • van Beilen JB, Funhoff EG (2005) Expanding the alkane oxygenase toolbox: new enzymes and applications. Curr Opin Biotechnol 16:308–314

    Article  CAS  Google Scholar 

  • van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689

    Article  CAS  Google Scholar 

  • Wackett LP (2002) Mechanism and applications of Rieske non-heme iron dioxygenases. Enz Microb Technol 31:577–587

    Article  CAS  Google Scholar 

  • Watanabe K, Teramoto M, Futamata H, Harayama S (1998) Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol 64:4396–4402

    CAS  Google Scholar 

  • Watanabe K, Futamata H, Harayama S (2002) Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Anton van Leeuwenh 81:655–663

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Holmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holmes, A.J. (2009). The Diversity of Soluble Di-iron Monooxygenases with Bioremediation Applications. In: Singh, A., Kuhad, R., Ward, O. (eds) Advances in Applied Bioremediation. Soil Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89621-0_5

Download citation

Publish with us

Policies and ethics