Skip to main content

Fundamentals of Image Processing in Nuclear Medicine

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine

Abstract

The purpose of this chapter is to introduce the reader to the fundamentals of image processing in Nuclear Medicine. It is not meant as a comprehensive guide, but more as an overview and introduction to those topics important to understanding the various forms of image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassen B, Curtis L, Reed CW (1949) A sensitive directional gamma ray detector. Technical Report #UCLA-49 (OSTI ID: 4434981), University of California, Los Angeles

    Google Scholar 

  2. Anger HO (1957) A new instrument for mapping gamma-ray emitters. Biology and Medicine Quarterly Report for October, November, December 1956, Report #UCRL-3653 (OSTI ID: 4354301), p. 51

    Google Scholar 

  3. Kuhl DE, Edwards RQ (1963) Image separation radioisotope scanning. Radiology 80:653–662

    Google Scholar 

  4. Jaszczak RJ (2006) The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences. Phys Med Biol 51:R99–R115

    Article  PubMed  Google Scholar 

  5. Anger HO (1964) Scintillation camera with multichannel collimators. J Nucl Med 5:515–531

    PubMed  CAS  Google Scholar 

  6. Gotway MB, Leung JW, Gooding GA, Litt HI, Reddy GP, Morita ET, Webb WR, Clark OH, Higgins CB (2002) Hyperfunctioning parathyroid tissue: spectrum of appearances on noninvasive imaging. AJR Am J Roentgenol 179:495–502

    PubMed  Google Scholar 

  7. Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 3:299–308

    Article  PubMed  CAS  Google Scholar 

  8. Demirkaya O, Al Mazrou R (2007) Performance test data analysis of scintillation cameras. IEEE Trans Nucl Sci 54:1506–1515

    Article  Google Scholar 

  9. Anderson S (2005) Collins English dictionary, 7th edn. HarperCollins, Glasgow

    Google Scholar 

  10. Galt JR, Garcia EV, Nowak DJ (1986) Filtering in Frequency Space. J Nucl Med Technol 14:152–160

    Google Scholar 

  11. Hansen CL (2002) Digital image processing for clinicians, part I: basics of image formation. J Nucl Cardiol 9:343–349

    Article  PubMed  Google Scholar 

  12. Hansen CL (2002) Digital image processing for clinicians, part II: filtering. J Nucl Cardiol 9:429–437

    Article  PubMed  Google Scholar 

  13. Hansen CL (2002) Digital image processing for clinicians, part III: SPECT reconstruction. J Nucl Cardiol 9:542–549

    Article  PubMed  Google Scholar 

  14. Zubal IG, Wisniewski G (1997) Understanding Fourier space and filter selection. J Nucl Cardiol 4:234–243

    Article  PubMed  CAS  Google Scholar 

  15. Cooke CD, Garcia EV, Cullom SJ, Faber TL, Pettigrew RI (1994) Determining the accuracy of calculating systolic wall thickening using a fast Fourier transform approximation: A simulation study based on canine and patient data. J Nucl Med 35:1185–1192

    PubMed  CAS  Google Scholar 

  16. Chen J, Faber TL, Cooke CD, Garcia EV (2008) Temporal resolution of multiharmonic phase analysis of ECG-gated myocardial perfusion SPECT studies. J Nucl Cardiol 15:383–391

    Article  PubMed  Google Scholar 

  17. Galt JR, Garcia EV, Robbins WL (1990) Effects of myocardial wall thickness on spect quantification. IEEE Trans Med Imaging 9:144–150

    Article  PubMed  CAS  Google Scholar 

  18. Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, Pettigrew RI, Garcia EV (1999) Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 40:650–659

    PubMed  CAS  Google Scholar 

  19. Pflugfelder PW, Sechtem UP, White RD, Higgins CB (1988) Quantification of regional myocardial function by rapid cine MR imaging. Am J Roentgenol 150:523–529

    CAS  Google Scholar 

  20. DePuey EG, Rozanski A (1995) Using gated technetium-99m-sestamibi SPECT to characterize fixed myocardial defects as infarct or artifact. J Nucl Med 36:952–955

    PubMed  CAS  Google Scholar 

  21. Chen J, Garcia EV, Folks RD, Cooke CD, Faber TL, Tauxe EL, Iskandrian AE (2005) Onset of left ventricular mechanical contraction as determined by phase analysis of ECG-gated myocardial perfusion SPECT imaging: development of a diagnostic tool for assessment of cardiac mechanical dyssynchrony. J Nucl Cardiol 12:687–695

    Article  PubMed  Google Scholar 

  22. Chen J, Henneman MM, Trimble MA, Bax JJ, Borges-Neto S, Iskandrian AE, Nichols KJ, Garcia EV (2008) Assessment of left ventricular mechanical dyssynchrony by phase analysis of ECG-gated SPECT myocardial perfusion imaging. J Nucl Cardiol 15:127–136

    Article  PubMed  Google Scholar 

  23. Henneman MM, Chen J, Dibbets-Schneider P, Stokkel MP, Bleeker GB, Ypenburg C, van der Wall EE, Schalij MJ, Garcia EV, Bax JJ (2007) Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med 48:1104–1111

    Article  PubMed  Google Scholar 

  24. Marsan NA, Henneman MM, Chen J, Ypenburg C, Dibbets P, Ghio S, Bleeker GB, Stokkel MP, van der Wall EE, Tavazzi L, Garcia EV, Bax JJ (2008) Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging. Eur J Nucl Med Mol Imaging 35:166–173

    Article  PubMed  Google Scholar 

  25. Henneman MM, Chen J, Ypenburg C, Dibbets P, Bleeker GB, Boersma E, Stokkel MP, van der Wall EE, Garcia EV, Bax JJ (2007) Phase analysis of gated myocardial perfusion single-photon emission computed tomography compared with tissue Doppler imaging for the assessment of left ventricular dyssynchrony. J Am Coll Cardiol 49:1708–1714

    Article  PubMed  Google Scholar 

  26. Trimble MA, Borges-Neto S, Honeycutt EF, Shaw LK, Pagnanelli R, Chen J, Iskandrian AE, Garcia EV, Velazquez EJ (2008) Evaluation of mechanical dyssynchrony and myocardial perfusion using phase analysis of gated SPECT imaging in patients with left ventricular dysfunction. J Nucl Cardiol 15:663–670

    Article  PubMed  Google Scholar 

  27. Taylor A, Schuster DM, Alazraki NP (2006) A clinician’s guide to nuclear medicine, 2nd edn. Society of Nuclear Medicine, Reston

    Google Scholar 

  28. Taylor A Jr, Corrigan PL, Galt J, Garcia EV, Folks R, Jones M, Manatunga A, Eshima D (1995) Measuring technetium-99m-MAG3 clearance with an improved camera-based method. J Nucl Med 36:1689–1695

    PubMed  CAS  Google Scholar 

  29. Taylor AT Jr, Fletcher JW, Nally JV Jr, Blaufox MD, Dubovsky EV, Fine EJ, Kahn D, Morton KA, Russell CD, Sfakianakis GN, Aurell M, Dondi M, Fommei E, Geyskes G, Granerus G, Oei HY (1998) Procedure guideline for diagnosis of renovascular hypertension. Society of Nuclear Medicine. J Nucl Med 39:1297–1302

    PubMed  Google Scholar 

  30. Corbett JR, Akinboboye OO, Bacharach SL, Borer JS, Botvinick EH, DePuey EG, Ficaro EP, Hansen CL, Henzlova MJ, Van Kriekinge S (2006) Equilibrium radionuclide angiocardiography. J Nucl Cardiol 13:e56–e79

    Article  PubMed  Google Scholar 

  31. Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, Humm JL (1997) Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 80:2505–2509

    Article  PubMed  CAS  Google Scholar 

  32. Jentzen W, Freudenberg L, Eising EG, Heinze M, Brandau W, Bockisch A (2007) Segmentation of PET volumes by iterative image thresholding. J Nucl Med 48:108–114

    PubMed  CAS  Google Scholar 

  33. Brambilla M, Matheoud R, Secco C, Loi G, Krengli M, Inglese E (2008) Threshold segmentation for PET target volume delineation in radiation treatment planning: the role of target-to-background ratio and target size. Med Phys 35:1207–1213

    Article  PubMed  CAS  Google Scholar 

  34. Mortensen E, Morse B, Barrett W, Udupa J (1992) Adaptive boundary detection using live-wire 2-dimensional dynamic-programming. In: Proceedings of the Computers in Cardiology, pp 635–638

    Google Scholar 

  35. Declerck J, Feldmar J, Goris ML, Betting F (1997) Automatic registration and alignment on a template of cardiac stress and rest reoriented SPECT images. IEEE Trans Med Imaging 16:727–737

    Article  PubMed  CAS  Google Scholar 

  36. Slomka PJ, Hurwitz GA, Stephenson J, Cradduck T (1995) Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm (see comment). J Nucl Med 36:1115–1122

    PubMed  CAS  Google Scholar 

  37. Mykkanen J, Tohka J, Luoma J, Ruotsalainen U (2005) Automatic extraction of brain surface and mid-sagittal plane from PET images applying deformable models. Comput Meth Programs Biomed 79:1–17

    Article  Google Scholar 

  38. Minoshima S, Koeppe RA, Frey KA, Kuhl DE (1994) Anatomic standardization: linear scaling and nonlinear warping of functional brain images. J Nucl Med 35:1528–1537

    PubMed  CAS  Google Scholar 

  39. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE (1995) A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36:1238–1248

    PubMed  CAS  Google Scholar 

  40. Garcia EV, Cooke CD, Van Train KF, Folks RD, Peifer JW, DePuey EG, Maddahi J, Alazraki NP, Galt JR, Ezquerra NF, Ziffer JA, Areeda JS, Berman DS (1990) Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 66:23E–31E

    Article  PubMed  CAS  Google Scholar 

  41. Germano G, Kavanagh PB, Waechter P, Areeda J, Van Kriekinge S, Sharir T, Lewin HC, Berman DS (2000) A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility (see comment). J Nucl Med 41:712–719

    PubMed  CAS  Google Scholar 

  42. Garcia E, Folks R, Pak S, Taylor A (2008) Automatic definition of renal regions-of-interests (ROIs) from MAG3 renograms in patients with suspected renal obstruction. J Nucl Med (Meeting Abstracts) 49:386P

    Google Scholar 

  43. Delaunay B (1934) Sur la sphere vide. A memoire de Georges Voronoi. Izv Akad Nauk SSSR, Otdelenie Matematicheskih i Estestvennyh Nauk 7:793–800

    Google Scholar 

  44. Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput Graph 21:163–169

    Article  Google Scholar 

  45. Foley JD, Phillips RL, Hughes JF, van Dam A, Feiner SK (1994) Introduction to computer graphics. Addison-Wesley, Longman

    Google Scholar 

  46. Cooke CD, Vansant JP, Krawczynska EG, Faber TL, Garcia EV (1997) Clinical validation of three-dimensional color-modulated displays of myocardial perfusion. J Nucl Cardiol 4:108–116

    Article  PubMed  CAS  Google Scholar 

  47. Santana CA, Garcia EV, Vansant JP, Krawczynska EG, Folks RD, Cooke CD, Faber TL (2000) Three-dimensional color-modulated display of myocardial SPECT perfusion distributions accurately assesses coronary artery disease. J Nucl Med 41:1941–1946

    PubMed  CAS  Google Scholar 

  48. Wallis JW, Miller TR (1990) Volume rendering in three-dimensional display of SPECT images (see comments). J Nucl Med 31:1421–1428

    PubMed  CAS  Google Scholar 

  49. Miller TR, Wallis JW, Sampathkumaran KS (1989) Three-dimensional display of gated cardiac blood-pool studies (see comments). J Nucl Med 30:2036–2041

    PubMed  CAS  Google Scholar 

  50. Wallis JW, Miller TR (1991) Display of cold lesions in volume rendering of SPECT studies. J Nucl Med 32:985

    Google Scholar 

  51. Drebin RA, Carpenter L, Hanrahan P (1988) Volume rendering. In: Proceedings of the 15th annual conference on Computer graphics and interactive techniques. ACM

    Google Scholar 

  52. Hoehne KH, Delapaz RL, Bernstein R, Taylor RC (1987) Combined surface display and reformatting for the three-dimensional analysis of tomographic data. Invest Radiol 22:658–664

    Article  PubMed  CAS  Google Scholar 

  53. Viola P, Wells WM (1995) Alignment by maximization of mutual information. In: Proceedings of the Fifth International Conference on Computer Vision (ICCV 95), June 20–23, Massachusetts Institute of Technology, Cambridge, MA. IEEE Computer Society, Washington, DC, pp 16–23

    Google Scholar 

  54. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G (1995) Automated multi-modality image registration based on information theory. Inform Process Med Imaging 3:263–274

    Google Scholar 

  55. Bajcsy R, Kovacic S (1989) Multiresolution Elastic Matching. Comput Vision Graph Image Processing 46:1–21

    Article  Google Scholar 

  56. Haber E, Modersitzki J (2004) Numerical methods for volume preserving image registration. Inverse Prob 20:1621–1638

    Article  Google Scholar 

  57. Bookstein FL (1989) Principal warps – thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11:567–585

    Article  Google Scholar 

  58. Kuhle WG, Porenta G, Huang SC, Buxton D, Gambhir SS, Hansen H, Phelps ME, Schelbert HR (1992) Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 86:1004–1017

    Article  PubMed  CAS  Google Scholar 

  59. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE (1990) Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 15:1032–1042

    Article  PubMed  CAS  Google Scholar 

  60. Kaufmann PA, Camici PG (2005) Myocardial blood flow measurement by PET: technical aspects and clinical applications. (erratum appears in J Nucl Med. 2005 46(2):291). J Nucl Med 46:75–88

    Google Scholar 

  61. Van Train KF, Areeda JS, Garcia EV, Cooke CD, Maddahi J, Kiat H, Germano G, Silagan G, Folks RD, Berman DS (1993) Quantitative same-day rest-stress technetium-99m-sestamibi SPECT: definition and validation of stress normal limits and criteria for abnormality. J Nucl Med 34:1494–1502

    PubMed  Google Scholar 

  62. Van Train KF, Garcia EV, Maddahi J, Areeda JS, Cooke CD, Kiat H, Silagan G, Folks RD, Friedman J, Matzer L, Germano G, Bateman T, Ziffer JA, DePuey EG, Fink-Bennett D, Cloninger K, Berman DS (1994) Multicenter trial validation for quantitative analysis of same-day rest- stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 35:609–618

    PubMed  Google Scholar 

  63. Santana CA, Folks RD, Garcia EV, Verdes L, Sanyal R, Hainer J, Di Carli MF, Esteves FP (2007) Quantitative (82)Rb PET/CT: development and validation of myocardial perfusion database. J Nucl Med 48:1122–1128

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Cooke, C.D., Faber, T.L., Galt, J.R. (2010). Fundamentals of Image Processing in Nuclear Medicine. In: Khalil, M. (eds) Basic Sciences of Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85962-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85962-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85961-1

  • Online ISBN: 978-3-540-85962-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics