Skip to main content

Implementing Prioritized Circumscription by Computing Disjunctive Stable Models

  • Conference paper
Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5253))

Abstract

The stable model semantics of disjunctive logic programs is based on minimal models which assign atoms false by default. While this feature is highly useful and leads to concise problem encodings, it occasionally makes knowledge representation with disjunctive rules difficult. Lifschitz’ parallel circumscription provides a remedy by introducing atoms that are allowed to vary or to have fixed values while others are falsified. Prioritized circumscription further refines this setting in terms of priority classes for atoms being falsified. In this paper, we present a linear and faithful transformation to embed prioritized circumscription into disjunctive logic programming in a systematic fashion. The implementation of the method enables the use of disjunctive solvers for computing prioritized circumscription. The results of an experimental evaluation indicate that the method proposed herein compares favorably with other existing implementations.

This research has been partially funded by the Academy of Finland under project #122399. A preliminary version of this work appeared in [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oikarinen, E., Janhunen, T.: A linear transformation from prioritized circumscription to disjunctive logic programming. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 440–441. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4), 365–385 (1991)

    Article  Google Scholar 

  3. Przymusinski, T.: Stable semantics for disjunctive programs. New Generation Computing 9(3/4), 401–424 (1991)

    Article  Google Scholar 

  4. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7(3), 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  5. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality and disjunctions in stable model semantics. ACM Transactions on Computational Logic 7(1), 1–37 (2006)

    Article  MathSciNet  Google Scholar 

  6. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1), 57–95 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lifschitz, V.: Computing circumscription. In: Joshi, A.K. (ed.) Proceedings of the 9th International Joint Conference on Artificial Intelligence, Los Angeles, California, August 18–23, 1985, pp. 121–127. Morgan Kaufmann, San Francisco (1985)

    Google Scholar 

  8. McCarthy, J.: Circumscription — A form of non-monotonic reasoning. Artificial Intelligence 13(1–2), 27–39 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Janhunen, T., Oikarinen, E.: Capturing parallel circumscription with disjunctive logic programs. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 134–146. Springer, Heidelberg (2004)

    Google Scholar 

  10. Oikarinen, E., Janhunen, T.: circ2dlp — translating circumscription into disjunctive logic programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 405–409. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Wakaki, T., Inoue, K.: Compiling prioritized circumscription into answer set programming. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 356–370. Springer, Heidelberg (2004)

    Google Scholar 

  12. Wakaki, T., Tomita, K.: Compiling prioritized circumscription into general disjunctive programs. In: Provetti, A., Son, T.C. (eds.) Proceedings of PREFS 2006: Preferences and their Applications in Logic Programming Systems, August 16, 2006, pp. 1–15 (2006)

    Google Scholar 

  13. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable models. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 175–187. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propositional case. Annals of Mathematics and Artificial Intelligence 15(3–4), 289–323 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gottlob, G.: The complexity of default reasoning under the stationary fixed point semantics. Information and Computation 121(1), 81–92 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. de Kleer, J., Konolige, K.: Eliminating the fixed predicates from a circumscription. Artificial Intelligence 39(3), 391–398 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Cadoli, M., Eiter, T., Gottlob, G.: An efficient method for eliminating varying predicates from a circumscription. Artificial Intelligence 54(2), 397–410 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gelfond, M., Lifschitz, V.: Compiling circumscriptive theories into logic programs. In: Reinfrank, M., Ginsberg, M.L., de Kleer, J., Sandewall, E. (eds.) Non-Monotonic Reasoning 1988. LNCS, vol. 346, pp. 74–99. Springer, Heidelberg (1988)

    Google Scholar 

  19. Sakama, C., Inoue, K.: Embedding circumscriptive theories in general disjunctive programs. In: Marek, V.W., Truszczyński, M., Nerode, A. (eds.) LPNMR 1995. LNCS, vol. 928, pp. 344–357. Springer, Heidelberg (1995)

    Google Scholar 

  20. Sakama, C., Inoue, K.: Prioritized logic programming and its application to commonsense reasoning. Artificial Intelligence 123(1–2), 185–222 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lee, J., Lin, F.: Loop formulas for circumscription. Artificial Intelligence 170(2), 160–185 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Danail Dochev Marco Pistore Paolo Traverso

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oikarinen, E., Janhunen, T. (2008). Implementing Prioritized Circumscription by Computing Disjunctive Stable Models. In: Dochev, D., Pistore, M., Traverso, P. (eds) Artificial Intelligence: Methodology, Systems, and Applications. AIMSA 2008. Lecture Notes in Computer Science(), vol 5253. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85776-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85776-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85775-4

  • Online ISBN: 978-3-540-85776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics