Skip to main content

circ2dlp — Translating Circumscription into Disjunctive Logic Programming

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3662))

Abstract

The stable model semantics of disjunctive logic programs (DLPs) is based on minimal models [5,12] which makes atoms appearing in a disjunctive program false by default. This is often desirable from the knowledge representation point of view, but certain domains become awkward to formalize if all atoms are blindly subject to minimization. In contrast to this, parallel circumscription [11] provides a re.ned notion of minimal models as it distinguishes varying and fixed atoms in addition to those being falsified. This eases the task of knowledge presentation in many cases. For example, it is straightforward to formalize Reiter-style minimal diagnoses [13] for digital circuits using parallel circumscription.

The research reported in this paper is partially funded by the Academy of Finland (project #211025) and the European Commission (contract IST-FET-2001-37004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Kleer, J., Konolige, K.: Eliminating the fixed predicates from a circumscription. Artificial Intelligence 39(3), 391–398 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: The diagnosis frontend of the DLV system. AI Communications 12(1-2), 99–111 (1999)

    MathSciNet  Google Scholar 

  3. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propositional case. Annals of Math. and AI 15, 289–323 (1995)

    MATH  MathSciNet  Google Scholar 

  4. Gelfond, M., Lifschitz, V.: Compiling circumscriptive theories into logic programs. In: Proceedings of the 7th National Conference on Artificial Intelligence, St. Paul, MN, August 1988, pp. 449–455. AAAI Press, Menlo Park (1988)

    Google Scholar 

  5. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)

    Article  Google Scholar 

  6. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Programming 35(1), 39–78 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.-H.: Unfolding partiality and disjunctions in stable model semantics. ACM Transactions on Computational Logic (2005), To appear, see http://www.acm.org/tocl/accepted.html

  8. Janhunen, T., Oikarinen, E.: Capturing parallel circumscription with disjunctive logic programs. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 134–146. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Lee, J., Lin, F.: Loop formulas for circumscription. In: Proceedings of 19th National Conference on Artificial Intelligence, San Jose, California, USA, July 2004, pp. 281–286. The MIT Press, Cambridge (2004)

    Google Scholar 

  10. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic (2005), To appear, see http://www.acm.org/tocl/accepted.html

  11. Lifschitz, V.: Computing circumscription. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, Los Angeles, California, USA, August 1985, pp. 121–127. Morgan Kaufmann, San Francisco (1985)

    Google Scholar 

  12. Przymusinski, T.C.: Stable semantics for disjunctive programs. New Generation Computing 9, 401–424 (1991)

    Article  Google Scholar 

  13. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32, 57–95 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sakama, C., Inoue, K.: Embedding circumscriptive theories in general disjunctive programs. In: Marek, V.W., Truszczyński, M., Nerode, A. (eds.) LPNMR 1995. LNCS, vol. 928, pp. 344–357. Springer, Heidelberg (1995)

    Google Scholar 

  15. Wakaki, T., Inoue, K.: Compiling prioritized circumscription into answer set programming. In: Demoen, B., Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 356–370. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oikarinen, E., Janhunen, T. (2005). circ2dlp — Translating Circumscription into Disjunctive Logic Programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2005. Lecture Notes in Computer Science(), vol 3662. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11546207_36

Download citation

  • DOI: https://doi.org/10.1007/11546207_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28538-0

  • Online ISBN: 978-3-540-31827-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics